論文の概要: BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis
- arxiv url: http://arxiv.org/abs/2304.10996v1
- Date: Fri, 21 Apr 2023 14:45:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 14:35:48.732787
- Title: BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis
- Title(参考訳): BERTを用いたバイオメディカル知識グラフの構築と解析のための臨床知識抽出
- Authors: Ayoub Harnoune and Maryem Rhanoui and Mounia Mikram and Siham Yousfi
and Zineb Elkaimbillah and Bouchra El Asri
- Abstract要約: 本稿では,バイオメディカル臨床ノートからの知識抽出と分析のためのエンドツーエンドアプローチを提案する。
提案フレームワークは, 関連構造化情報を高精度に抽出できる。
- 参考スコア(独自算出の注目度): 0.4893345190925178
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Background : Knowledge is evolving over time, often as a result of new
discoveries or changes in the adopted methods of reasoning. Also, new facts or
evidence may become available, leading to new understandings of complex
phenomena. This is particularly true in the biomedical field, where scientists
and physicians are constantly striving to find new methods of diagnosis,
treatment and eventually cure. Knowledge Graphs (KGs) offer a real way of
organizing and retrieving the massive and growing amount of biomedical
knowledge.
Objective : We propose an end-to-end approach for knowledge extraction and
analysis from biomedical clinical notes using the Bidirectional Encoder
Representations from Transformers (BERT) model and Conditional Random Field
(CRF) layer.
Methods : The approach is based on knowledge graphs, which can effectively
process abstract biomedical concepts such as relationships and interactions
between medical entities. Besides offering an intuitive way to visualize these
concepts, KGs can solve more complex knowledge retrieval problems by
simplifying them into simpler representations or by transforming the problems
into representations from different perspectives. We created a biomedical
Knowledge Graph using using Natural Language Processing models for named entity
recognition and relation extraction. The generated biomedical knowledge graphs
(KGs) are then used for question answering.
Results : The proposed framework can successfully extract relevant structured
information with high accuracy (90.7% for Named-entity recognition (NER), 88%
for relation extraction (RE)), according to experimental findings based on
real-world 505 patient biomedical unstructured clinical notes.
Conclusions : In this paper, we propose a novel end-to-end system for the
construction of a biomedical knowledge graph from clinical textual using a
variation of BERT models.
- Abstract(参考訳): 背景:知識は時間とともに進化しており、しばしば新しい発見や推論の方法の変更の結果である。
また、新たな事実や証拠が利用可能になり、複雑な現象に対する新たな理解がもたらされる。
これは、科学者や医師が常に新しい診断方法、治療方法、最終的に治療方法を見つけようと努力している生体医学分野において特に当てはまる。
知識グラフ(KG)は、大量のバイオメディカル知識を組織化し、取り出すための真の方法を提供する。
目的:両方向エンコーダ表現(BERT)モデルと条件付ランダムフィールド(CRF)レイヤを用いて,バイオメディカル臨床ノートから知識抽出と分析を行うエンド・ツー・エンドアプローチを提案する。
アプローチは知識グラフに基づいており、医療機関間の関係や相互作用といった抽象的な生体医学概念を効果的に処理することができる。
これらの概念を直感的に視覚化するだけでなく、kgsはより単純な表現に単純化したり、問題を異なる視点から表現に変換することで、より複雑な知識検索問題を解決できる。
我々は、名前付きエンティティ認識と関係抽出に自然言語処理モデルを用いたバイオメディカル知識グラフを構築した。
生成された生物医学知識グラフ(KG)は質問応答に使用される。
結果】本研究の枠組みは,実世界505例の生体医学的非構造化臨床ノートに基づく実験結果に基づき,高精度な構造情報抽出(名前付きエンティティ認識(ner)90.7%,関係抽出(re)88%)が可能である。
結論:本論文では,BERTモデルのバリエーションを用いた臨床テキストからのバイオメディカル知識グラフ構築のための新しいエンドツーエンドシステムを提案する。
関連論文リスト
- Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning [45.6771125432388]
言語モデル(genEREL)を用いたジェノミクス表現について紹介する。
GENERELは遺伝学と生物医学の知識基盤を橋渡しするために設計されたフレームワークである。
本実験は,SNPと臨床概念のニュアンス関係を効果的に把握するgenERELの能力を実証するものである。
論文 参考訳(メタデータ) (2024-10-14T04:19:52Z) - A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis [48.84443450990355]
ディープネットワークは、医学的なスキャンに適用すると、例外のない状況で失敗することが多いため、自然画像の解析において広く成功している。
胸部X線や皮膚病変画像の文脈において、異なる病院から採取したデータや、性別、人種などの人口統計学的変数によって構築されたデータなど、ドメインシフトに対するモデル感度に焦点をあてる。
医学教育からインスピレーションを得て,自然言語で伝達される明示的な医学知識を基盤としたディープネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T17:55:02Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - From Large Language Models to Knowledge Graphs for Biomarker Discovery
in Cancer [0.9437165725355702]
人工知能(AI)の難しいシナリオは、バイオメディカルデータを使用して、がんの病態の診断と治療のレコメンデーションを提供することである。
大規模知識グラフ(KG)は、意味的相互関連エンティティや関係に関する事実の統合と抽出によって構築することができる。
本稿では,癌特異的バイオマーカー発見と対話型QAを活用するドメインKGを開発する。
論文 参考訳(メタデータ) (2023-10-12T14:36:13Z) - Applying BioBERT to Extract Germline Gene-Disease Associations for Building a Knowledge Graph from the Biomedical Literature [0.0]
本稿では,ジェムリン遺伝子と疾患を結合する知識グラフ構築手法SimpleGermKGを提案する。
遺伝子および疾患の抽出には、バイオメディカルコーパス上でトレーニング済みのBERTモデルであるBioBERTを用いる。
記事,遺伝子,疾患間の意味的関連性について,部分的関係性アプローチを実装した。
知識グラフには297の遺伝子、130の疾患、46,747のトリプルが含まれている。
論文 参考訳(メタデータ) (2023-09-11T18:05:12Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
本稿では,バイオメディカルテキストと非構造化医療報告から関係を抽出するハイブリッドニューラルネットワークであるバイオメディカル情報抽出を提案する。
本研究は,2つの主要な生医学的関係抽出タスク,化学物質とタンパク質の相互作用,およびクロスホスピタル・パン・カンノロジー報告コーパスについて検討した。
論文 参考訳(メタデータ) (2021-10-26T13:19:28Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
我々は,KG の完成に向けた科学的 LM の研究を行い,生物医学的リンク予測を強化するために,その潜在知識を活用できるかどうかを探る。
LMモデルとKG埋め込みモデルを統合し,各入力例をいずれかのモデルに割り当てることを学ぶルータ法を用いて,性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-06-17T17:55:33Z) - Neural Multi-Hop Reasoning With Logical Rules on Biomedical Knowledge
Graphs [10.244651735862627]
我々は,創薬の現実世界における課題に基づいて経験的研究を行う。
我々は,この課題を,化合物と疾患の両方が知識グラフの実体に対応するリンク予測問題として定式化する。
本稿では,強化学習と論理ルールに基づく政策誘導歩行を組み合わせた新しい手法PoLoを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:46:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。