論文の概要: Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning
- arxiv url: http://arxiv.org/abs/2410.10144v1
- Date: Mon, 14 Oct 2024 04:19:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 02:44:27.981692
- Title: Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning
- Title(参考訳): マルチタスク・マルチソースコントラスト学習によるゲノム・バイオメディカル概念の統一表現
- Authors: Hongyi Yuan, Suqi Liu, Kelly Cho, Katherine Liao, Alexandre Pereira, Tianxi Cai,
- Abstract要約: 言語モデル(genEREL)を用いたジェノミクス表現について紹介する。
GENERELは遺伝学と生物医学の知識基盤を橋渡しするために設計されたフレームワークである。
本実験は,SNPと臨床概念のニュアンス関係を効果的に把握するgenERELの能力を実証するものである。
- 参考スコア(独自算出の注目度): 45.6771125432388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce GENomic Encoding REpresentation with Language Model (GENEREL), a framework designed to bridge genetic and biomedical knowledge bases. What sets GENEREL apart is its ability to fine-tune language models to infuse biological knowledge behind clinical concepts such as diseases and medications. This fine-tuning enables the model to capture complex biomedical relationships more effectively, enriching the understanding of how genomic data connects to clinical outcomes. By constructing a unified embedding space for biomedical concepts and a wide range of common SNPs from sources such as patient-level data, biomedical knowledge graphs, and GWAS summaries, GENEREL aligns the embeddings of SNPs and clinical concepts through multi-task contrastive learning. This allows the model to adapt to diverse natural language representations of biomedical concepts while bypassing the limitations of traditional code mapping systems across different data sources. Our experiments demonstrate GENEREL's ability to effectively capture the nuanced relationships between SNPs and clinical concepts. GENEREL also emerges to discern the degree of relatedness, potentially allowing for a more refined identification of concepts. This pioneering approach in constructing a unified embedding system for both SNPs and biomedical concepts enhances the potential for data integration and discovery in biomedical research.
- Abstract(参考訳): 本稿では,遺伝子および生物医学的知識基盤を橋渡しするフレームワークであるgenEREL(genomic Encoding Representation with Language Model)を紹介する。
genERELとの違いは、言語モデルを微調整して、病気や医薬品といった臨床概念の背後に生物学的知識を注入する能力である。
この微調整により、複雑なバイオメディカルな関係をより効果的に捉え、ゲノムデータが臨床的結果とどのように結びつくかを理解することができる。
患者レベルのデータ、バイオメディカル知識グラフ、GWAS要約などのソースから、バイオメディカル概念のための統一的な埋め込み空間と幅広い共通SNPを構築することにより、GENERELはマルチタスクコントラスト学習を通じて、SNPと臨床概念の埋め込みを整合させる。
これにより、モデルは、異なるデータソースにまたがる従来のコードマッピングシステムの制限を回避しながら、バイオメディカルな概念の多様な自然言語表現に適応することができる。
本実験は,SNPと臨床概念のニュアンス関係を効果的に把握するgenERELの能力を実証するものである。
genERELはまた、関連性の程度を識別し、より洗練された概念の識別を可能にする。
SNPとバイオメディカル概念の両方に統一的な埋め込みシステムを構築するというこの先駆的なアプローチは、バイオメディカル研究におけるデータ統合と発見の可能性を高める。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
本稿では,複数のモデルの強みを統合するハイブリッドアプローチを提案する。
BERTは、文脈化された単語の埋め込み、文字レベルの情報キャプチャのための事前訓練されたマルチチャネルCNN、およびテキスト内の単語間の依存関係のシーケンスラベリングとモデル化のためのBiLSTM + CRFを提供する。
我々は、ベンチマークi2b2/2010データセットを用いて、F1スコア90.11を達成する。
論文 参考訳(メタデータ) (2023-12-24T21:45:36Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - Exploring the In-context Learning Ability of Large Language Model for
Biomedical Concept Linking [4.8882241537236455]
本研究では,生物医学的概念リンクのための大規模モデルのコンテキスト内学習機能を活用する手法について検討する。
提案手法は2段階のレトリーブ・アンド・ランク・フレームワークを採用する。
BC5CDRの病体正規化では90.%、化学体正規化では94.7%の精度を達成した。
論文 参考訳(メタデータ) (2023-07-03T16:19:50Z) - Hierarchical Pretraining for Biomedical Term Embeddings [4.69793648771741]
階層データに基づく新しいバイオメディカル用語表現モデルであるHiPrBERTを提案する。
HiPrBERTは階層的な情報からペアワイズ距離を効果的に学習し,さらにバイオメディカルな応用に極めて有用な埋め込みを実現できることを示す。
論文 参考訳(メタデータ) (2023-07-01T08:16:00Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis [0.4893345190925178]
本稿では,バイオメディカル臨床ノートからの知識抽出と分析のためのエンドツーエンドアプローチを提案する。
提案フレームワークは, 関連構造化情報を高精度に抽出できる。
論文 参考訳(メタデータ) (2023-04-21T14:45:33Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。