論文の概要: Autoregressive models for biomedical signal processing
- arxiv url: http://arxiv.org/abs/2304.11070v1
- Date: Mon, 17 Apr 2023 08:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 08:06:46.606825
- Title: Autoregressive models for biomedical signal processing
- Title(参考訳): 生体信号処理のための自己回帰モデル
- Authors: Jonas F. Haderlein, Andre D. H. Peterson, Anthony N. Burkitt, Iven M.
Y. Mareels, David B. Grayden
- Abstract要約: 本稿では、損失関数を介して不確実性を明示的に組み込んだ自己回帰モデリングの枠組みを提案する。
本研究は, 時系列の復調に成功し, システムパラメータの再構成に成功していることを示す。
この新たなパラダイムは、脳-コンピュータインターフェースデータ分析やてんかんなどの疾患における脳のダイナミクスの理解など、神経科学の様々な応用に利用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Autoregressive models are ubiquitous tools for the analysis of time series in
many domains such as computational neuroscience and biomedical engineering. In
these domains, data is, for example, collected from measurements of brain
activity. Crucially, this data is subject to measurement errors as well as
uncertainties in the underlying system model. As a result, standard signal
processing using autoregressive model estimators may be biased. We present a
framework for autoregressive modelling that incorporates these uncertainties
explicitly via an overparameterised loss function. To optimise this loss, we
derive an algorithm that alternates between state and parameter estimation. Our
work shows that the procedure is able to successfully denoise time series and
successfully reconstruct system parameters. This new paradigm can be used in a
multitude of applications in neuroscience such as brain-computer interface data
analysis and better understanding of brain dynamics in diseases such as
epilepsy.
- Abstract(参考訳): 自己回帰モデルは、計算神経科学やバイオメディカルエンジニアリングなど、多くの領域における時系列解析のためのユビキタスツールである。
これらの領域では、データは例えば、脳活動の測定から収集される。
重要なことに、このデータは、下層のシステムモデルにおける不確実性と同様に、測定エラーにさらされる。
その結果、自己回帰モデル推定器を用いた標準信号処理がバイアスとなる可能性がある。
我々は,これらの不確かさを過パラメータ損失関数によって明示的に組み込む自己回帰モデルのためのフレームワークを提案する。
この損失を最適化するために、状態とパラメータ推定を交互に行うアルゴリズムを導出する。
本研究は,時系列を推定し,システムパラメータの再構成に有効であることを示す。
この新たなパラダイムは、脳-コンピュータインターフェースデータ分析やてんかんなどの疾患における脳のダイナミクスの理解など、神経科学の様々な応用に利用できる。
関連論文リスト
- Analysis of Numerical Integration in RNN-Based Residuals for Fault
Diagnosis of Dynamic Systems [0.6999740786886536]
本論文は,重度トラックの後処理システムの事例スタディを含み,これらの技術が故障診断性能を向上させる可能性を明らかにする。
データ駆動モデリングと機械学習は、動的システムの振る舞いをモデル化するために広く使われている。
論文 参考訳(メタデータ) (2023-05-08T12:48:18Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
本稿では,ニューラルネットワークに基づく記号回帰手法を提案する。
非常に小さなトレーニングデータセットとシステムに関する事前知識に基づいて、物理的に妥当なモデルを構築する。
本研究では,TurtleBot 2移動ロボット,磁気操作システム,2つの抵抗の等価抵抗,アンチロックブレーキシステムの長手力の4つの試験システムに対するアプローチを実験的に評価した。
論文 参考訳(メタデータ) (2023-02-01T22:05:04Z) - Supervised Parameter Estimation of Neuron Populations from Multiple
Firing Events [3.2826301276626273]
本研究では,一対のスパイキング系列とパラメータラベルからなる学習セットから,ニューロン集団のパラメータを自動的に学習する手法について,教師あり学習を通して検討した。
我々は、ニューロンモデルを用いて、異なるパラメータ設定での計算において多くのニューロン集団をシミュレートする。
次に、遺伝的検索、ベイズ逐次推定、ランダムウォーク近似モデルなどの古典的手法と比較する。
論文 参考訳(メタデータ) (2022-10-02T03:17:05Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
本稿では,ニューラルネットワークを用いてパラメータの精度の高い確率密度を求める手法を提案する。
2つの組み合わせは、非常に大きなシステムであっても、モデルパラメータの密度を素早く見積もることができる強力なツールを作成する。
論文 参考訳(メタデータ) (2022-09-27T17:36:26Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Uncovering the Underlying Physics of Degrading System Behavior Through a
Deep Neural Network Framework: The Case of Remaining Useful Life Prognosis [0.0]
本稿では、ディープニューラルネットワークフレームワークを用いて、劣化の物理を探索するオープンボックスアプローチを提案する。
フレームワークには3つのステージがあり、システムの状態を表す潜伏変数と対応するPDEを見つけることを目的としている。
論文 参考訳(メタデータ) (2020-06-10T21:05:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。