China and the U.S. produce more impactful AI research when collaborating together
- URL: http://arxiv.org/abs/2304.11123v2
- Date: Wed, 13 Nov 2024 17:06:10 GMT
- Title: China and the U.S. produce more impactful AI research when collaborating together
- Authors: Bedoor AlShebli, Shahan Ali Memon, James A. Evans, Talal Rahwan,
- Abstract summary: We analyze a dataset of over 350,000 AI scientists and 5,000,000 AI papers.
Most AI scientists who move to China come from the U.S., and most who move to the U.S. come from China.
Although the number of collaborations between the two countries has increased since the dawn of the millennium, such collaborations continue to be relatively rare.
- Score: 2.115100245425281
- License:
- Abstract: Artificial Intelligence (AI) has become a disruptive technology, promising to grant a significant economic and strategic advantage to nations that harness its power. China, with its recent push towards AI adoption, is challenging the U.S.'s position as the global leader in this field. Given AI's massive potential, as well as the fierce geopolitical tensions between China and the U.S., several recent policies have been put in place to discourage AI scientists from migrating to, or collaborating with, the other nation. Nevertheless, the extent of talent migration and cross-border collaboration are not fully understood. Here, we analyze a dataset of over 350,000 AI scientists and 5,000,000 AI papers. We find that since 2000, China and the U.S. have led the field in terms of impact, novelty, productivity, and workforce. Most AI scientists who move to China come from the U.S., and most who move to the U.S. come from China, highlighting a notable bidirectional talent migration. Moreover, the vast majority of those moving in either direction have Asian ancestry. Upon moving, those scientists continue to collaborate frequently with those in the origin country. Although the number of collaborations between the two countries has increased since the dawn of the millennium, such collaborations continue to be relatively rare. A matching experiment reveals that the two countries have always been more impactful when collaborating than when each works without the other. These findings suggest that instead of suppressing cross-border migration and collaboration between the two nations, the science could benefit from promoting such activities.
Related papers
- Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - Evolving landscape of US-China science collaboration: Convergence and
divergence [0.0]
The US and China have significantly fortified their collaboration across diverse scientific disciplines.
Recent reports hint at a potential decline in collaboration between these two giants.
This study delves into the evolving landscape of interaction between the US and China over recent decades.
arXiv Detail & Related papers (2023-09-10T14:11:46Z) - Has China caught up to the US in AI research? An exploration of mimetic
isomorphism as a model for late industrializers [9.03136346887569]
We examine China's AI development process, demonstrating that it is characterized by rapid learning and differentiation.
By 2018, the time lag between China and the USA in addressing AI research topics had evaporated.
This finding suggests that China has effectively bridged a significant knowledge gap and could potentially be setting out on an independent research trajectory.
arXiv Detail & Related papers (2023-07-11T19:59:54Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [64.77385130665128]
The aim of this workshop is to foster the exchange of insights on past and ongoing research towards effective and long-lasting collaborations between humans and robots.
We particularly focus on AI techniques required to implement autonomous and proactive interactions.
arXiv Detail & Related papers (2022-06-07T11:12:45Z) - Internationalizing AI: Evolution and Impact of Distance Factors [6.045548929961739]
International collaboration in the field of AI is not prevalent (only 15.7%)
The United States and China have promoted the international collaboration in the field of AI.
arXiv Detail & Related papers (2021-11-10T00:44:53Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Skilled and Mobile: Survey Evidence of AI Researchers' Immigration
Preferences [0.0]
The U.S. is the most popular destination for AI researchers, followed by the U.K., Canada, Switzerland, and France.
Visa and immigration difficulties were perceived to be a particular impediment to conducting AI research in the U.S., the U.K., and Canada.
arXiv Detail & Related papers (2021-04-15T05:07:11Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [65.60507052509406]
The aim of this workshop is to give researchers from academia and industry the possibility to discuss the inter-and multi-disciplinary nature of the relationships between people and robots.
arXiv Detail & Related papers (2021-03-23T16:52:12Z) - My Boss the Computer: A Bayesian analysis of socio-demographic and
cross-cultural determinants of attitude toward the Non-Human Resource
Management [0.0]
This study collects a cross-sectional dataset of 1,015 survey responses of international students from 48 countries and 8 regions worldwide.
A majority of the respondents (52%) are concerned about being managed by AI.
We find having a higher income, being male, majoring in business, and/or self-rated familiarity with AI correlate with a more positive view of emotional AI in the workplace.
arXiv Detail & Related papers (2021-01-24T09:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.