論文の概要: Dialectical language model evaluation: An initial appraisal of the
commonsense spatial reasoning abilities of LLMs
- arxiv url: http://arxiv.org/abs/2304.11164v1
- Date: Sat, 22 Apr 2023 06:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 20:02:04.717511
- Title: Dialectical language model evaluation: An initial appraisal of the
commonsense spatial reasoning abilities of LLMs
- Title(参考訳): 弁証的言語モデル評価:LLMのコモンセンス空間推論能力の初期評価
- Authors: Anthony G Cohn, Jose Hernandez-Orallo
- Abstract要約: 本稿では,コモンセンス推論のための言語モデルの弁証的評価について検討する。
この種の評価の目標は、集合的なパフォーマンス値を得るのではなく、失敗を見つけ、システムのバウンダリをマップすることにある。
本稿では,空間的推論の特定の場合に対して,このような評価を定性的に検討する。
- 参考スコア(独自算出の注目度): 10.453404263936335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models have become very popular recently and many claims have been
made about their abilities, including for commonsense reasoning. Given the
increasingly better results of current language models on previous static
benchmarks for commonsense reasoning, we explore an alternative dialectical
evaluation. The goal of this kind of evaluation is not to obtain an aggregate
performance value but to find failures and map the boundaries of the system.
Dialoguing with the system gives the opportunity to check for consistency and
get more reassurance of these boundaries beyond anecdotal evidence. In this
paper we conduct some qualitative investigations of this kind of evaluation for
the particular case of spatial reasoning (which is a fundamental aspect of
commonsense reasoning). We conclude with some suggestions for future work both
to improve the capabilities of language models and to systematise this kind of
dialectical evaluation.
- Abstract(参考訳): 言語モデルは近年非常に人気があり、コモンセンス推論など、その能力について多くの主張がなされている。
コモンセンス推論のための以前の静的ベンチマークにおける現在の言語モデルのより優れた結果を考えると、代替弁証法について検討する。
この種の評価の目標は、集合的なパフォーマンス値を得るのではなく、失敗を見つけ、システムのバウンダリをマップすることにある。
システムとの対話は一貫性をチェックし、逸話的な証拠を超えてこれらの境界をより安心させる機会を与えます。
本稿では,空間的推論(コモンセンス推論の基本的側面である)において,このような評価の質的な検討を行う。
本稿では,言語モデルの能力向上と,このような弁証的評価の体系化を両立させるために,今後の研究を提案する。
関連論文リスト
- Reasoning Elicitation in Language Models via Counterfactual Feedback [17.908819732623716]
事実と反事実の質問において精度のバランスをとる新しい指標を導出する。
本稿では,より優れた推論機構を実現するための微調整手法を提案する。
各種現実シナリオにおける微調整言語モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-10-02T15:33:30Z) - Lessons from the Trenches on Reproducible Evaluation of Language Models [60.522749986793094]
我々は,大規模言語モデルの評価を3年間経験し,研究者に指導とレッスンを提供してきた。
本稿では,言語モデルの独立性,再現性,評価を行うオープンソースライブラリであるLanguage Model Evaluation Harness(lm-eval)を紹介する。
論文 参考訳(メタデータ) (2024-05-23T16:50:49Z) - Towards Personalized Evaluation of Large Language Models with An
Anonymous Crowd-Sourcing Platform [64.76104135495576]
大規模言語モデルのための匿名クラウドソーシング評価プラットフォームであるBingJianを提案する。
このプラットフォームを通じて、ユーザーは質問を提出し、パーソナライズされ、潜在的に幅広い機能でモデルをテストできる。
論文 参考訳(メタデータ) (2024-03-13T07:31:20Z) - Pseudointelligence: A Unifying Framework for Language Model Evaluation [14.95543156914676]
本稿では,モデルと学習評価器の動的相互作用として,モデル評価キャストの複雑性理論フレームワークを提案する。
このフレームワークは,言語モデル評価における2つのケーススタディを推論し,既存の評価手法を解析するために利用できることを示す。
論文 参考訳(メタデータ) (2023-10-18T17:48:05Z) - Establishing Trustworthiness: Rethinking Tasks and Model Evaluation [36.329415036660535]
我々は、NLPにおけるタスクとモデル評価を構成するものを再考する時が来たと論じる。
本稿では,モデルの機能的能力の起源を理解するために,既存のコンパートナライズドアプローチについてレビューする。
論文 参考訳(メタデータ) (2023-10-09T06:32:10Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in
Natural Language Understanding [1.827510863075184]
Curriculumは広範囲言語現象の評価のためのNLIベンチマークの新しいフォーマットである。
この言語フェノメナ駆動型ベンチマークは、モデル行動の診断とモデル学習品質の検証に有効なツールであることを示す。
論文 参考訳(メタデータ) (2022-04-13T10:32:03Z) - Just Rank: Rethinking Evaluation with Word and Sentence Similarities [105.5541653811528]
埋め込みの本質的な評価は かなり遅れています そして過去10年間 重要な更新は行われていません
本稿ではまず,単語と文の埋め込み評価におけるゴールドスタンダードとして意味的類似性を用いた問題点を指摘する。
本稿では,下流タスクとより強い相関関係を示すEvalRankという本質的な評価手法を提案する。
論文 参考訳(メタデータ) (2022-03-05T08:40:05Z) - On the Use of Linguistic Features for the Evaluation of Generative
Dialogue Systems [17.749995931459136]
言語的特徴に基づく指標は,人間の判断と良好な相関を維持し,解釈可能であることを示唆する。
この提案を支持するために,複数の対話モデルによって生成された対話のさまざまな言語的特徴を計測し,分析する。
特徴の振る舞いはテストされたモデルの既知の特性と一致し、ドメイン間で類似していることが分かりました。
論文 参考訳(メタデータ) (2021-04-13T16:28:00Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
イメージキャプションや機械翻訳などのタスクを評価するデファクトメトリクスとして、いくつかの一般的な指標が残っている。
これは、使いやすさが原因でもあり、また、研究者がそれらを見て解釈する方法を知りたがっているためでもある。
本稿では,モデルの自動評価方法について,コミュニティにより慎重に検討するよう促す。
論文 参考訳(メタデータ) (2020-10-26T13:57:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。