The Role of AI in Human-AI Creative Writing for Hong Kong Secondary
Students
- URL: http://arxiv.org/abs/2304.11276v1
- Date: Fri, 21 Apr 2023 23:50:09 GMT
- Title: The Role of AI in Human-AI Creative Writing for Hong Kong Secondary
Students
- Authors: Hengky Susanto, David James Woo, and Kai Guo
- Abstract summary: Recent advancement in Natural Language Processing has led to the development of language models capable of generating human-like language.
Our empirical findings show that language models play different roles in helping student writers to be more creative.
- Score: 4.739597165434651
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The recent advancement in Natural Language Processing (NLP) capability has
led to the development of language models (e.g., ChatGPT) that is capable of
generating human-like language. In this study, we explore how language models
can be utilized to help the ideation aspect of creative writing. Our empirical
findings show that language models play different roles in helping student
writers to be more creative, such as the role of a collaborator, a provocateur,
etc
Related papers
- Evaluating Creative Short Story Generation in Humans and Large Language Models [0.7965327033045846]
Large language models (LLMs) have recently demonstrated the ability to generate high-quality stories.
We conduct a systematic analysis of creativity in short story generation across LLMs and everyday people.
Our findings reveal that while LLMs can generate stylistically complex stories, they tend to fall short in terms of creativity when compared to average human writers.
arXiv Detail & Related papers (2024-11-04T17:40:39Z) - Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically.
Recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities.
Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning.
arXiv Detail & Related papers (2024-10-07T02:31:47Z) - Purposeful remixing with generative AI: Constructing designer voice in multimodal composing [16.24460569356749]
This study investigates whether the use of generative AI tools could help student authors construct a more consistent voice in multimodal writing.
The study sheds light on the intentional and discursive nature of multimodal writing with AI as afforded by the technological flexibility.
arXiv Detail & Related papers (2024-03-28T02:15:03Z) - SARD: A Human-AI Collaborative Story Generation [0.0]
We propose SARD, a drag-and-drop visual interface for generating a multi-chapter story using large language models.
Our evaluation of the usability of SARD and its creativity support shows that while node-based visualization of the narrative may help writers build a mental model, it exerts unnecessary mental overhead to the writer.
We also found that AI generates stories that are less lexically diverse, irrespective of the complexity of the story.
arXiv Detail & Related papers (2024-03-03T17:48:42Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Language Models: A Guide for the Perplexed [51.88841610098437]
This tutorial aims to help narrow the gap between those who study language models and those who are intrigued and want to learn more.
We offer a scientific viewpoint that focuses on questions amenable to study through experimentation.
We situate language models as they are today in the context of the research that led to their development.
arXiv Detail & Related papers (2023-11-29T01:19:02Z) - Learning to Model the World with Language [100.76069091703505]
To interact with humans and act in the world, agents need to understand the range of language that people use and relate it to the visual world.
Our key idea is that agents should interpret such diverse language as a signal that helps them predict the future.
We instantiate this in Dynalang, an agent that learns a multimodal world model to predict future text and image representations.
arXiv Detail & Related papers (2023-07-31T17:57:49Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Creative Writing with an AI-Powered Writing Assistant: Perspectives from
Professional Writers [9.120878749348986]
Natural language generation (NLG) using neural language models has brought us closer than ever to the goal of building AI-powered creative writing tools.
Recent developments in natural language generation using neural language models have brought us closer than ever to the goal of building AI-powered creative writing tools.
arXiv Detail & Related papers (2022-11-09T17:00:56Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
Figurative and metaphorical language are commonplace in discourse.
It remains an open question to what extent modern language models can interpret nonliteral phrases.
We introduce Fig-QA, a Winograd-style nonliteral language understanding task.
arXiv Detail & Related papers (2022-04-26T23:42:22Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
We present CoAuthor, a dataset designed for revealing GPT-3's capabilities in assisting creative and argumentative writing.
We demonstrate that CoAuthor can address questions about GPT-3's language, ideation, and collaboration capabilities.
We discuss how this work may facilitate a more principled discussion around LMs' promises and pitfalls in relation to interaction design.
arXiv Detail & Related papers (2022-01-18T07:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.