論文の概要: Detecting Political Opinions in Tweets through Bipartite Graph Analysis:
A Skip Aggregation Graph Convolution Approach
- arxiv url: http://arxiv.org/abs/2304.11367v1
- Date: Sat, 22 Apr 2023 10:38:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 18:59:28.913567
- Title: Detecting Political Opinions in Tweets through Bipartite Graph Analysis:
A Skip Aggregation Graph Convolution Approach
- Title(参考訳): 2部グラフ解析によるつぶやきの政治的意見の検出:スリップ集約グラフ畳み込みアプローチ
- Authors: Xingyu Peng, Zhenkun Zhou, Chong Zhang, Ke Xu
- Abstract要約: 私たちは2020年の米国大統領選挙に集中し、Twitterから大規模なデータセットを作成します。
ツイート中の政治的意見を検出するために,ユーザの投稿行動とリツイート行動に基づいて,ユーザツイートの2部グラフを構築した。
ツイートノードに2階隣人からの情報を集約する新しいスキップアグリゲーション機構を導入する。
- 参考スコア(独自算出の注目度): 9.350629400940493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Public opinion is a crucial factor in shaping political decision-making.
Nowadays, social media has become an essential platform for individuals to
engage in political discussions and express their political views, presenting
researchers with an invaluable resource for analyzing public opinion. In this
paper, we focus on the 2020 US presidential election and create a large-scale
dataset from Twitter. To detect political opinions in tweets, we build a
user-tweet bipartite graph based on users' posting and retweeting behaviors and
convert the task into a Graph Neural Network (GNN)-based node classification
problem. Then, we introduce a novel skip aggregation mechanism that makes tweet
nodes aggregate information from second-order neighbors, which are also tweet
nodes due to the graph's bipartite nature, effectively leveraging user
behavioral information. The experimental results show that our proposed model
significantly outperforms several competitive baselines. Further analyses
demonstrate the significance of user behavioral information and the
effectiveness of skip aggregation.
- Abstract(参考訳): 世論は政治的意思決定を形作る上で重要な要素である。
今日では、ソーシャルメディアは、個人が政治的議論に参加し、自分の政治的見解を述べる上で不可欠なプラットフォームとなり、研究者に世論を分析する貴重なリソースを提供している。
本稿では、2020年の米国大統領選挙に焦点を当て、Twitterから大規模なデータセットを作成する。
ツイート中の政治的意見を検出するために,ユーザの投稿やリツイート行動に基づくユーザ-ツイート二部グラフを構築し,タスクをグラフニューラルネットワーク(gnn)ベースのノード分類問題に変換する。
そこで本研究では,グラフの2部構成性にもとづくツイートノードである2次の隣人からの情報をツイートノードに集約し,ユーザの行動情報を効果的に活用する,新しいスキップ集約機構を提案する。
実験結果から,提案モデルがいくつかの競争ベースラインを著しく上回ることがわかった。
さらなる分析により,ユーザの行動情報の重要性とスキップアグリゲーションの有効性が示された。
関連論文リスト
- Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - DoubleH: Twitter User Stance Detection via Bipartite Graph Neural
Networks [9.350629400940493]
2020年の米国大統領選挙の大規模なデータセットをクロールし、手動でタグ付けされたハッシュタグによって、すべてのユーザーを自動的にラベル付けします。
本稿では,二部グラフニューラルネットワークモデルであるDoubleHを提案する。
論文 参考訳(メタデータ) (2023-01-20T19:20:10Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Retweet-BERT: Political Leaning Detection Using Language Features and
Information Diffusion on Social Networks [30.143148646797265]
Retweet-BERTは、シンプルでスケーラブルなモデルで、Twitterユーザーの政治的傾向を推定する。
我々の仮定は、同様のイデオロギーを共有する人々の間で、ネットワークや言語学のパターンがホモフィリーであることに由来する。
論文 参考訳(メタデータ) (2022-07-18T02:18:20Z) - Evidential Temporal-aware Graph-based Social Event Detection via
Dempster-Shafer Theory [76.4580340399321]
ETGNN(Evidential Temporal-aware Graph Neural Network)を提案する。
ノードがテキストであり、エッジがそれぞれ複数の共有要素によって決定されるビュー固有グラフを構築する。
ビュー固有の不確実性を考慮すると、すべてのビューの表現は、明らかなディープラーニング(EDL)ニューラルネットワークを介してマス関数に変換される。
論文 参考訳(メタデータ) (2022-05-24T16:22:40Z) - Tweets2Stance: Users stance detection exploiting Zero-Shot Learning
Algorithms on Tweets [0.06372261626436675]
この研究の目的は、TwitterのパーティアカウントがTwitterで書いたことを悪用する各声明に関して、党pのスタンスを予測することである。
複数の実験から得られた結果から、Tweets2Stanceは、タスクの複雑さを考慮して、一般的な最小値である1.13の姿勢を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2022-04-22T14:00:11Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Inferring Political Preferences from Twitter [0.0]
ソーシャルメディアの政治的センチメント分析は、政治ストラテジストが政党や候補者のパフォーマンスを精査するのに役立つ。
選挙期間中、ソーシャルネットワークはブログ、チャット、討論、政党や政治家の展望に関する議論で溢れている。
本研究では、従来の機械学習を用いて、テキスト分類問題としてモデル化することで、ツイートに存在する政治的意見の傾きを特定することを選んだ。
論文 参考訳(メタデータ) (2020-07-21T05:20:43Z) - TIMME: Twitter Ideology-detection via Multi-task Multi-relational
Embedding [26.074367752142198]
我々は、人々のイデオロギーや政治的傾向を予測する問題を解決することを目的としている。
我々は、Twitterデータを用いてそれを推定し、分類問題として定式化する。
論文 参考訳(メタデータ) (2020-06-02T00:00:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。