Quantizing Galilean spacetime: a reconstruction of Maxwell's equations in empty space
- URL: http://arxiv.org/abs/2304.11380v2
- Date: Fri, 6 Sep 2024 12:44:39 GMT
- Title: Quantizing Galilean spacetime: a reconstruction of Maxwell's equations in empty space
- Authors: Ulf Klein,
- Abstract summary: We show that Maxwell's equations in empty space can be derived using the same method.
We suspect that all fundamental fields can be traced back to continuous sets of particle trajectories.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As was recently shown, non-relativistic quantum theory can be derived by means of a projection method from a continuum of classical solutions for (massive) particles. In this paper we show that Maxwell's equations in empty space can be derived using the same method. In this case the starting point is a continuum of solutions of equations of motion for massless particles describing the structure of Galilean space-time. As a result of the projection, the space-time structure itself is changed by the appearance of a new fundamental constant $c$ with the dimension of a velocity. This maximum velocity $c$, derived here for massless particles, is analogous to the accuracy limit $\hbar$ derived earlier for massive particles. The projection method can thus be interpreted as a generalized quantization. We suspect that all fundamental fields can be traced back to continuous sets of particle trajectories, and that in this sense the particle concept is more fundamental than the field concept.
Related papers
- Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - Quantum mechanics without quantum potentials [0.0]
Non-locality in quantum mechanics can be resolved by considering relativistically covariant diffusion in spacetime.
We introduce the concept of momentum equilinear to replace the second-order Bohm-Newton equations of motion.
arXiv Detail & Related papers (2024-01-08T18:51:38Z) - Hydrodynamically Inspired Pilot-Wave Theory: An Ensemble Interpretation [4.01037106063721]
chapter explores a deterministic hydrodynamically-inspired ensemble interpretation for free relativistic particles.
We simulate an ensemble of multiple random undimensional-related particle trajectories.
We find coherent structures in which particles are less likely to cross.
arXiv Detail & Related papers (2023-07-24T06:39:40Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Gauge independent description of Aharonov-Bohm Effect [3.923738926797954]
Aharonov-Bohm (AB) effect is a pure quantum effect that implies a measurable phase shift in the wave function for a charged particle.
Classically, such a non-local effect appears to be impossible since the Lorentz force depends on only the magnetic field at the location of the particle.
In quantum mechanics, the Hamiltonian, and thus the Schr"odinger equation, has a local coupling between the current due to the particle, and the electromagnetic vector potential $mathbfA$.
arXiv Detail & Related papers (2022-09-22T15:23:49Z) - Exact quantum-mechanical equations for particle beams [91.3755431537592]
These equations present the exact generalizations of the well-known paraxial equations in optics.
Some basic properties of exact wave eigenfunctions of particle beams have been determined.
arXiv Detail & Related papers (2022-06-29T20:39:36Z) - Extended Uncertainty Principle via Dirac Quantization [0.0]
We show that generic infrared (IR) modifications arise when we describe quantum theory in curved spacetime.
We study particle dynamics in an arbitrary curved spacetime by embedding them in a higher-dimensional flat geometry.
arXiv Detail & Related papers (2022-04-04T18:23:30Z) - Bundle Theoretic Descriptions of Massless Single-Particle State Spaces;
How do we perceive a moving quantum particle [0.0]
We show that the gauge freedoms of Electromagnetism and General Relativity naturally arise as manifestations of an inertial observer's perception of the internal quantum states of a photon and a graviton.
We show that gauge freedom is exhibited by all massless particles, except those with spin-0 and 1/2.
arXiv Detail & Related papers (2022-01-27T08:20:11Z) - Relativistic quantum field theory of stochastic dynamics in the Hilbert
space [8.25487382053784]
We develop an action formulation of dynamics in the Hilbert space.
By coupling the random to quantum fields, we obtain a random-number action which has the statistical spacetime translation.
We prove that the QFT is renormal even in the presence of interaction.
arXiv Detail & Related papers (2021-12-28T04:58:43Z) - Path integral action in the generalized uncertainty principle framework [0.36832029288386126]
We study the path integral representation of a particle moving in an arbitrary potential using the generalized uncertainty principle (GUP)
First we work out the action of the particle in an arbitrary potential and hence find an upper bound to the velocity of a free particle.
arXiv Detail & Related papers (2021-05-10T13:17:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.