Extended Uncertainty Principle via Dirac Quantization
- URL: http://arxiv.org/abs/2204.01780v2
- Date: Mon, 26 Aug 2024 16:20:41 GMT
- Title: Extended Uncertainty Principle via Dirac Quantization
- Authors: Mytraya Gattu, S. Shankaranarayanan,
- Abstract summary: We show that generic infrared (IR) modifications arise when we describe quantum theory in curved spacetime.
We study particle dynamics in an arbitrary curved spacetime by embedding them in a higher-dimensional flat geometry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unifying quantum theory and gravity remains a fundamental challenge in physics. While most existing literature focuses on the ultraviolet (UV) modifications of quantum theory due to gravity, this work shows that generic infrared (IR) modifications arise when we describe quantum theory in curved spacetime. We explicitly demonstrate that the modifications to the position-momentum algebra are proportional to curvature invariants (such as the Ricci scalar and Kretschmann scalar). Our results, derived through a rigorous application of Dirac's quantization procedure, demonstrate that infrared effects in quantum systems can be axiomatically derived. We study particle dynamics in an arbitrary curved spacetime by embedding them in a higher-dimensional flat geometry. Our approach, which involves embedding particle dynamics in a higher-dimensional flat geometry and utilizing Dirac's quantization procedure, allows us to capture the dynamics of a particle in 4-dimensional curved spacetime through a modified position-momentum algebra. When applied to various spacetimes, this method reveals that the corrections due to the spacetime curvature are universal. We further compare our results with those derived using extended uncertainty principles. Finally, we discuss the implications of our work for black holes and entanglement.
Related papers
- Geometry-Information Duality: Quantum Entanglement Contributions to Gravitational Dynamics [0.0]
We propose a fundamental duality between the geometric properties of spacetime and the informational content of quantum fields.
We modify Einstein's field equations by introducing an informational stress-energy tensor derived from quantum entanglement entropy.
Our results indicate that quantum information plays a crucial role in gravitational dynamics.
arXiv Detail & Related papers (2024-09-17T19:28:50Z) - Interacting Dirac fields in an expanding universe: dynamical condensates and particle production [41.94295877935867]
This work focuses on a self-interacting field theory of Dirac fermions in an expanding Friedmann-Robertson-Walker universe.
We study how the non-trivialative condensates arise and, more importantly, how their real-time evolution has an impact on particle production.
arXiv Detail & Related papers (2024-08-12T14:21:25Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Path integral in position-deformed Heisenberg algebra with strong
quantum gravitational measurement [0.0]
We show that quantum gravity bends the paths of particles, allowing them to travel quickly from one point to another.
It is numerically observed by the decrease in values of classical actions as one increases the quantum gravitational effects.
arXiv Detail & Related papers (2022-04-29T14:21:30Z) - Schr\"odinger's Black Hole Cat [0.0]
We show how to describe such "spacetime superpositions" and explore effects they induce upon quantum matter.
Our approach capitalizes on standard tools of quantum field theory in curved space.
arXiv Detail & Related papers (2022-04-01T12:11:36Z) - An intuitive picture of the Casimir effect [1.285406944500982]
The Casimir effect predicts the emergence of an attractive force between two parallel plates in vacuum.
This paper overcomes no-go theorems of quantum electrodynamics and obtains a local relativistic quantum description of the electromagnetic field in free space.
arXiv Detail & Related papers (2022-03-27T20:28:17Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - The Entropic Dynamics of Relativistic Quantum Fields in Curved
Space-time [0.0]
We apply the Entropic Dynamics (ED) framework to construct a quantum dynamics for scalar fields in space-time.
Using a similar methodology, we construct a theory of quantum scalar fields in flat space-time that is relativistic, but not manifestly so.
We consider such a theory and discuss its plausibility as a candidate for a quantum gravity theory.
arXiv Detail & Related papers (2021-05-14T19:24:21Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.