Improved Churn Causal Analysis Through Restrained High-Dimensional
Feature Space Effects in Financial Institutions
- URL: http://arxiv.org/abs/2304.11503v1
- Date: Sun, 23 Apr 2023 00:45:35 GMT
- Title: Improved Churn Causal Analysis Through Restrained High-Dimensional
Feature Space Effects in Financial Institutions
- Authors: David Hason Rudd, Huan Huo, Guandong Xu
- Abstract summary: Customer churn describes terminating a relationship with a business or reducing customer engagement over a specific period.
Customer acquisition cost can be five to six times that of customer retention, hence investing in customers with churn risk is wise.
This study presents a conceptual framework to discover the confounding features that correlate with independent variables and are causally related to those dependent variables that impact churn.
- Score: 9.84528076130809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Customer churn describes terminating a relationship with a business or
reducing customer engagement over a specific period. Customer acquisition cost
can be five to six times that of customer retention, hence investing in
customers with churn risk is wise. Causal analysis of the churn model can
predict whether a customer will churn in the foreseeable future and identify
effects and possible causes for churn. In general, this study presents a
conceptual framework to discover the confounding features that correlate with
independent variables and are causally related to those dependent variables
that impact churn. We combine different algorithms including the SMOTE,
ensemble ANN, and Bayesian networks to address churn prediction problems on a
massive and high-dimensional finance data that is usually generated in
financial institutions due to employing interval-based features used in
Customer Relationship Management systems. The effects of the curse and blessing
of dimensionality assessed by utilising the Recursive Feature Elimination
method to overcome the high dimension feature space problem. Moreover, a causal
discovery performed to find possible interpretation methods to describe cause
probabilities that lead to customer churn. Evaluation metrics on validation
data confirm the random forest and our ensemble ANN model, with %86 accuracy,
outperformed other approaches. Causal analysis results confirm that some
independent causal variables representing the level of super guarantee
contribution, account growth, and account balance amount were identified as
confounding variables that cause customer churn with a high degree of belief.
This article provides a real-world customer churn analysis from current status
inference to future directions in local superannuation funds.
Related papers
- FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Privacy-Preserving Financial Anomaly Detection via Federated Learning & Multi-Party Computation [17.314619091307343]
We describe a privacy-preserving framework that allows financial institutions to jointly train highly accurate anomaly detection models.
We show that our solution enables the network to train a highly accurate anomaly detection model while preserving privacy of customer data.
arXiv Detail & Related papers (2023-10-06T19:16:41Z) - Early Churn Prediction from Large Scale User-Product Interaction Time
Series [0.0]
This paper conducts an exhaustive study on predicting user churn using historical data.
We aim to create a model forecasting customer churn likelihood, facilitating businesses in comprehending attrition trends and formulating effective retention plans.
arXiv Detail & Related papers (2023-09-25T08:44:32Z) - Causal Analysis of Customer Churn Using Deep Learning [9.84528076130809]
Customer churn describes terminating a relationship with a business or reducing customer engagement over a specific period.
This paper proposes a framework using a deep feedforward neural network for classification.
We also propose a causal Bayesian network to predict cause probabilities that lead to customer churn.
arXiv Detail & Related papers (2023-04-20T18:56:13Z) - Customer Churn Prediction Model using Explainable Machine Learning [0.0]
Key objective of the paper is to develop a unique Customer churn prediction model which can help to predict potential customers who are most likely to churn.
We evaluated and analyzed the performance of various tree-based machine learning approaches and algorithms.
In order to improve Model explainability and transparency, paper proposed a novel approach to calculate Shapley values for possible combination of features.
arXiv Detail & Related papers (2023-03-02T04:45:57Z) - Application of Causal Inference to Analytical Customer Relationship
Management in Banking and Insurance [6.228766191647919]
In statistics, causality has been studied and applied for many years, but not in great detail in artificial intelligence (AI)
In this study, we employed the principles of causal inference to provide explainability for solving the analytical customer relationship management problems.
Good quality counterfactuals were generated for the loan default, insurance fraud detection, and credit card fraud detection datasets.
arXiv Detail & Related papers (2022-08-19T05:57:58Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
Super-Apps have changed the way we think about the interactions between users and commerce.
This paper investigates how different interactions between users within a Super-App provide a new source of information to predict borrower behavior.
arXiv Detail & Related papers (2021-02-19T15:13:06Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.