論文の概要: Device management and network connectivity as missing elements in TinyML
landscape
- arxiv url: http://arxiv.org/abs/2304.11669v1
- Date: Sun, 23 Apr 2023 14:33:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 17:03:21.884577
- Title: Device management and network connectivity as missing elements in TinyML
landscape
- Title(参考訳): TinyMLランドスケープの欠落要素としてのデバイス管理とネットワーク接続
- Authors: Tomasz Szydlo and Marcin Nagy
- Abstract要約: TinyMLに基づくソリューションのデプロイには、いくつかの課題に対処する必要がある。
これには、ハードウェアの不均一性、マイクロプロセッサ(MCU)アーキテクチャ、リソース可用性の制約が含まれる。
本稿は、LwM2Mプロトコルが、ネットワーク接続と相互運用性に関する特定課題をいかに解決できるかを論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deployment of solutions based on TinyML requires meeting several challenges.
These include hardware heterogeneity, microprocessor (MCU) architectures, and
resource availability constraints. Another challenge is the variety of
operating systems for MCU, limited memory management implementations and
limited software interoperability between devices. A number of these challenges
are solved by dedicated programming libraries and the ability to compile code
for specific devices. Nevertheless, the challenge discussed in the paper is the
issue of network connectivity for such solutions. We point out that more
emphasis should be placed on standard protocols, interoperability of solutions
and security. Finally, the paper discusses how the LwM2M protocol can solve the
identified challenges related to network connectivity and interoperability.
- Abstract(参考訳): TinyMLに基づくソリューションのデプロイには、いくつかの課題に対処する必要がある。
これには、ハードウェアの不均一性、マイクロプロセッサ(MCU)アーキテクチャ、リソース可用性の制約が含まれる。
もうひとつの課題は、mcuのさまざまなオペレーティングシステム、メモリ管理実装の制限、デバイス間のソフトウェア相互運用性の制限である。
これらの課題の多くは、専用のプログラミングライブラリと特定のデバイスでコードをコンパイルする機能によって解決される。
それでも、論文で議論されている課題は、そのようなソリューションに対するネットワーク接続の問題である。
我々は、標準プロトコル、ソリューションの相互運用性、セキュリティにもっと重点を置くべきだと指摘する。
最後に,LwM2Mプロトコルがネットワーク接続性や相互運用性にまつわる課題を解決する方法について論じる。
関連論文リスト
- Vertical Federated Learning for Failure-Cause Identification in Disaggregated Microwave Networks [5.789459834052429]
本稿では,非凝集マイクロ波ネットワークにおけるフェデレートラーニングの適用について検討する。
実験結果から,集中型シナリオに対して,F1スコアを少なくとも1%の間隔で連続的に達成できることが示唆された。
論文 参考訳(メタデータ) (2025-02-05T04:09:15Z) - Adapting MLOps for Diverse In-Network Intelligence in 6G Era: Challenges and Solutions [4.183643697928412]
機械学習操作(MLOps)は、これらの課題に取り組むための体系的なアプローチを提供する。
我々は、強化学習操作(RLOPS)、連合学習操作(FedOps)、生成AI操作(GenOps)の3つの運用パイプラインを定式化する。
これらのパイプラインは、さまざまな学習/推論機能をネットワークにシームレスに統合する基盤となる。
論文 参考訳(メタデータ) (2024-10-24T14:47:28Z) - Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
無線ネットワーク制御システム(Wireless Networked Control Systems, WNCS)は、ドローン群や自律ロボットなどのアプリケーションにおいて柔軟な制御を可能にする産業用4.0に必須である。
本稿では,マルチ状態マルコフブロックフェーディングチャネル上で限られた無線リソースを共有するセンサやアクチュエータを用いて,複数の制御ループ間の相関ダイナミクスを捕捉する実用的WNCSモデルを提案する。
本研究では,ハイブリッドな動作空間を効率的に処理し,通信制御の相関関係を捉え,疎域変数や浮動小数点制御の入力に拘わらず堅牢なトレーニングを確実にするDeep Reinforcement Learning (DRL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-15T06:28:21Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
本稿では,新しいMixture-of-Experts(MoE)ベースのSemComシステムを提案する。
このシステムはゲーティングネットワークと複数の専門家で構成され、それぞれ異なるセキュリティ課題に特化している。
ゲーティングネットワークは、ユーザ定義のセキュリティ要件に基づいて、異種攻撃に対抗するための適切な専門家を適応的に選択する。
車両ネットワークにおけるケーススタディは、MoEベースのSemComシステムの有効性を示す。
論文 参考訳(メタデータ) (2024-09-24T03:17:51Z) - Designing and Implementing a Generator Framework for a SIMD Abstraction Library [53.84310825081338]
SIMD抽象化ライブラリを生成するための新しいエンドツーエンドフレームワークであるTSLGenを提案する。
私たちのフレームワークは既存のライブラリに匹敵するもので、同じパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-26T13:25:38Z) - Emergent Communication in Multi-Agent Reinforcement Learning for Future
Wireless Networks [30.678152524314225]
創発的コミュニケーションを用いたマルチエージェント強化学習(EC-MARL)は,高次元連続制御問題に対処するための有望な解である。
本稿では,将来の6G無線ネットワークにおけるEC-MARLの重要性を述べる。
論文 参考訳(メタデータ) (2023-09-12T07:40:53Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Multi-Agent Reinforcement Learning Based Coded Computation for Mobile Ad
Hoc Computing [6.94732606123235]
マルチエージェント強化学習(MARL)に基づく新しい符号化計算方式を提案する。
MARLには、ネットワーク変更への適応性、高い効率性、不確実なシステム障害に対する堅牢性など、多くの有望な特徴がある。
包括的シミュレーション研究により,提案手法は最先端分散コンピューティングスキームを上回ることができることが示された。
論文 参考訳(メタデータ) (2021-04-15T15:50:57Z) - Machine Learning for Intelligent Optical Networks: A Comprehensive
Survey [9.947717243638289]
コミュニケーションネットワークにおけるインテリジェンス向上は必須であり、人工知能(AI)と機械学習(ML)を取り入れている側面もいくつかある。
本稿では,知的光ネットワークにおけるMLの既存応用に関する詳細な調査を行う。
MLの応用は、光学ネットワーク制御と資源管理に分類され、光学ネットワークの監視と生存可能性に分類される。
論文 参考訳(メタデータ) (2020-03-11T13:51:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。