論文の概要: Adapting MLOps for Diverse In-Network Intelligence in 6G Era: Challenges and Solutions
- arxiv url: http://arxiv.org/abs/2410.18793v1
- Date: Thu, 24 Oct 2024 14:47:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:48:58.486209
- Title: Adapting MLOps for Diverse In-Network Intelligence in 6G Era: Challenges and Solutions
- Title(参考訳): 6G時代の異種ネットワークインテリジェンスに対するMLOpsの適用:課題と解決策
- Authors: Peizheng Li, Ioannis Mavromatis, Tim Farnham, Adnan Aijaz, Aftab Khan,
- Abstract要約: 機械学習操作(MLOps)は、これらの課題に取り組むための体系的なアプローチを提供する。
我々は、強化学習操作(RLOPS)、連合学習操作(FedOps)、生成AI操作(GenOps)の3つの運用パイプラインを定式化する。
これらのパイプラインは、さまざまな学習/推論機能をネットワークにシームレスに統合する基盤となる。
- 参考スコア(独自算出の注目度): 4.183643697928412
- License:
- Abstract: Seamless integration of artificial intelligence (AI) and machine learning (ML) techniques with wireless systems is a crucial step for 6G AInization. However, such integration faces challenges in terms of model functionality and lifecycle management. ML operations (MLOps) offer a systematic approach to tackle these challenges. Existing approaches toward implementing MLOps in a centralized platform often overlook the challenges posed by diverse learning paradigms and network heterogeneity. This article provides a new approach to MLOps targeting the intricacies of future wireless networks. Considering unique aspects of the future radio access network (RAN), we formulate three operational pipelines, namely reinforcement learning operations (RLOps), federated learning operations (FedOps), and generative AI operations (GenOps). These pipelines form the foundation for seamlessly integrating various learning/inference capabilities into networks. We outline the specific challenges and proposed solutions for each operation, facilitating large-scale deployment of AI-Native 6G networks.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)技術と無線システムとのシームレスな統合は、6G AInizationにとって重要なステップである。
しかしながら、そのような統合は、モデル機能とライフサイクル管理の観点から、課題に直面します。
ML運用(MLOps)は、これらの課題に取り組むための体系的なアプローチを提供する。
集中型プラットフォームでMLOpsを実装するための既存のアプローチは、さまざまな学習パラダイムとネットワークの不均一性によって引き起こされる課題を、しばしば見落としている。
この記事では、将来の無線ネットワークの複雑さをターゲットとしたMLOpsに対する新しいアプローチを提供する。
将来の無線アクセスネットワーク(RAN)のユニークな側面を考慮すると、強化学習操作(RLOps)、フェデレーション学習操作(FedOps)、ジェネレーティブAI操作(GenOps)の3つの運用パイプラインを定式化する。
これらのパイプラインは、さまざまな学習/推論機能をネットワークにシームレスに統合する基盤となる。
我々は、AI-Native 6Gネットワークの大規模展開を容易にし、各運用における具体的な課題と解決策を概説する。
関連論文リスト
- An Overview of Machine Learning-Enabled Optimization for Reconfigurable Intelligent Surfaces-Aided 6G Networks: From Reinforcement Learning to Large Language Models [16.3772708546698]
RIS支援6Gネットワークに対する機械学習(ML)対応最適化の概要について述べる。
既存の研究と異なり、大規模言語モデル(LLM)がRLとどのように組み合わせてネットワーク最適化問題に対処できるかをさらに議論する。
論文 参考訳(メタデータ) (2024-05-09T03:07:59Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
大規模言語モデル (LLM) と基礎モデルは6Gシステムのゲームチェンジャーとして最近注目されている。
本稿では,人工知能(AI)ネイティブネットワークの展開に適したユニバーサルファンデーションモデルを設計するための包括的ビジョンを提案する。
論文 参考訳(メタデータ) (2024-01-30T00:21:41Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
効果的な分散機械学習フレームワークとして、フェデレートラーニング(FL)が登場します。
本稿では,ネットワーク設計と資源オーケストレーションの両面から,スケーラブルな無線FLを実現する上での課題と解決策について論じる。
論文 参考訳(メタデータ) (2023-10-08T08:55:03Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
フェデレーテッド・ラーニング(FL)は、6GネットワークでユビキタスAIを実現するための重要な実現手段として期待されている。
6Gネットワークにおける有効かつ効率的なFL実装には、いくつかのシステムおよび統計的不均一性の課題がある。
本稿では,これらの課題に効果的に対処できる最適化手法について検討する。
論文 参考訳(メタデータ) (2023-03-15T02:18:21Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Transfer Learning for Future Wireless Networks: A Comprehensive Survey [49.746711269488515]
本稿では,無線ネットワークにおける転送学習の応用に関する包括的調査を行う。
まず,形式的定義,分類,様々な種類のtl技術を含むtlの概要について述べる。
次に,無線ネットワークにおける新たな課題に対処するために,多様なTLアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-15T14:19:55Z) - Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled
Wireless Networks: A Tutorial [29.76086936463468]
このチュートリアルは、AI対応の6Gネットワークのための深層マルチエージェント強化学習(MARL)に焦点を当て、DRL(Deep Reinforcement Learning)の役割に焦点を当てている。
本稿では, 単エージェント RL と MARL の数学的枠組みについて概説する。
モデルベースRL(MBRL)や協調MARLなどのRLアルゴリズムを選択的に記述する。
論文 参考訳(メタデータ) (2020-11-06T22:12:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
フェデレートラーニング(Federated Learning)は、データを収集するノード間で処理能力を活用することによって、ネットワークエッジでMLモデルをトレーニングするテクニックとして登場した。
我々は、エッジデバイスからクラウドサーバへのノード連続体にMLモデルのトレーニングをインテリジェントに分散する、フォグラーニングと呼ばれる新しい学習パラダイムを提唱する。
論文 参考訳(メタデータ) (2020-06-07T05:11:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。