Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow
- URL: http://arxiv.org/abs/2304.11693v1
- Date: Sun, 23 Apr 2023 16:01:36 GMT
- Title: Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow
- Authors: Noam Buckman, Sertac Karaman, Daniela Rus
- Abstract summary: Semi-cooperative behaviors are intrinsic properties of human drivers and should be considered for autonomous driving.
New autonomous planners can consider the social value orientation (SVO) of human drivers to generate socially-compliant trajectories.
We present study of implicit semi-cooperative driving where agents deploy a game-theoretic version of iterative best response.
- Score: 76.38515853201116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-cooperative behaviors are intrinsic properties of human drivers and
should be considered for autonomous driving. In addition, new autonomous
planners can consider the social value orientation (SVO) of human drivers to
generate socially-compliant trajectories. Yet the overall impact on traffic
flow for this new class of planners remain to be understood. In this work, we
present study of implicit semi-cooperative driving where agents deploy a
game-theoretic version of iterative best response assuming knowledge of the
SVOs of other agents. We simulate nominal traffic flow and investigate whether
the proportion of prosocial agents on the road impact individual or system-wide
driving performance. Experiments show that the proportion of prosocial agents
has a minor impact on overall traffic flow and that benefits of
semi-cooperation disproportionally affect egoistic and high-speed drivers.
Related papers
- Cooperative Advisory Residual Policies for Congestion Mitigation [11.33450610735004]
We develop a class of learned residual policies that can be used in cooperative advisory systems.
Our policies advise drivers to behave in ways that mitigate traffic congestion while accounting for diverse driver behaviors.
Our approaches successfully mitigate congestion while adapting to different driver behaviors.
arXiv Detail & Related papers (2024-06-30T01:10:13Z) - Analyze Drivers' Intervention Behavior During Autonomous Driving -- A
VR-incorporated Approach [2.7532019227694344]
This work sheds light on understanding human drivers' intervention behavior involved in the operation of autonomous vehicles.
Experiment environments were implemented where the virtual reality (VR) and traffic micro-simulation are integrated.
Performance indicators such as the probability of intervention, accident rates are defined and used to quantify and compare the risk levels.
arXiv Detail & Related papers (2023-12-04T06:36:57Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Interaction-Aware Decision-Making for Autonomous Vehicles in Forced
Merging Scenario Leveraging Social Psychology Factors [7.812717451846781]
We consider a behavioral model that incorporates both social behaviors and personal objectives of the interacting drivers.
We develop a receding-horizon control-based decision-making strategy that estimates online the other drivers' intentions.
arXiv Detail & Related papers (2023-09-25T19:49:14Z) - Autonomous and Human-Driven Vehicles Interacting in a Roundabout: A
Quantitative and Qualitative Evaluation [34.67306374722473]
We learn a policy to minimize traffic jams and to minimize pollution in a roundabout in Milan, Italy.
We qualitatively evaluate the learned policy using a cutting-edge cockpit to assess its performance in near-real-world conditions.
Our findings show that human-driven vehicles benefit from optimizing AVs dynamics.
arXiv Detail & Related papers (2023-09-15T09:02:16Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
We introduce a distributed multi-agent reinforcement learning (MARL) algorithm that can predict trajectories and intents in dense and heterogeneous traffic scenarios.
Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations.
arXiv Detail & Related papers (2023-06-09T20:12:02Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.