論文の概要: Analysis of Recent Trends in Face Recognition Systems
- arxiv url: http://arxiv.org/abs/2304.11725v1
- Date: Sun, 23 Apr 2023 18:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 16:46:18.738295
- Title: Analysis of Recent Trends in Face Recognition Systems
- Title(参考訳): 顔認識システムの動向分析
- Authors: Krishnendu K. S
- Abstract要約: クラス間の類似性とクラス内変異により、顔認識システムは、それぞれ偽マッチングと偽非マッチエラーを生成する。
近年の研究では、抽出した特徴の堅牢性向上と、認識精度を高めるための前処理アルゴリズムに焦点が当てられている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the tremendous advancements in face recognition technology, face
modality has been widely recognized as a significant biometric identifier in
establishing a person's identity rather than any other biometric trait like
fingerprints that require contact sensors. However, due to inter-class
similarities and intra-class variations, face recognition systems generate
false match and false non-match errors respectively. Recent research focuses on
improving the robustness of extracted features and the pre-processing
algorithms to enhance recognition accuracy. Since face recognition has been
extensively used for several applications ranging from law enforcement to
surveillance systems, the accuracy and performance of face recognition must be
the finest. In this paper various face recognition systems are discussed and
analysed like RPRV, LWKPCA, SVM Model, LTrP based SPM and a deep learning
framework for recognising images from CCTV. All these face recognition methods,
their implementations and performance evaluations are compared to derive the
best outcome for future developmental works.
- Abstract(参考訳): 顔認識技術の飛躍的な進歩により、顔のモダリティは、接触センサーを必要とする指紋のような他の生体認証特性よりも、人のアイデンティティを確立する上で重要な生体認証として広く認識されている。
しかし、クラス間の類似性やクラス内変異により、顔認識システムは、それぞれ偽マッチングと偽非マッチングエラーを生成する。
最近の研究は、抽出された特徴のロバスト性の向上と、認識精度を向上させる前処理アルゴリズムに焦点を当てている。
顔認識は、法執行から監視システムまで、様々な用途で広く用いられてきたため、顔認識の精度と性能は最も高くなければならない。
本稿では、RPRV、LWKPCA、SVM Model、LTrPベースのSPM、CCTVの画像認識のためのディープラーニングフレームワークなど、さまざまな顔認識システムについて論じ、分析する。
これらの顔認識手法、その実装および性能評価は、将来の開発作業において最良の結果を得るために比較される。
関連論文リスト
- TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
顔認識システムは、高セキュリティアプリケーションに広くデプロイされている。
フェースモーフィングのようなデジタル操作は、顔認識システムにセキュリティ上の脅威をもたらす。
本稿では,ディープラーニングに基づく顔認識システムを,顔形態攻撃に対してより堅牢なものにするための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T21:04:05Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - A Comparative Analysis of the Face Recognition Methods in Video
Surveillance Scenarios [0.0]
本研究では,最先端の顔認識手法に対する比較ベンチマーク表を提案する。
本研究では, 年齢差, クラス内差(顔のメイクアップ, ひげなど)のある顔IDの映像監視データセットを構築し, ネイティブな顔画像データを用いて評価を行った。
一方、この研究は、マスクのない顔、マスクされた顔、眼鏡をかけた顔など、さまざまな状況下で最高の認識方法を発見する。
論文 参考訳(メタデータ) (2022-11-05T17:59:18Z) - QMagFace: Simple and Accurate Quality-Aware Face Recognition [5.5284501467256515]
本稿では,QMag-Face(QMag-Face,QMag-Face,QMag-Face,QMag-Face,QMag-Face,QMag-Face,QMag-Face,QMag-Face)を提案する。
いくつかの顔認識データベースとベンチマークで実施された実験は、導入された品質認識が認識性能を一貫した改善をもたらすことを示した。
論文 参考訳(メタデータ) (2021-11-26T12:44:54Z) - Homogeneous Low-Resolution Face Recognition Method based Correlation
Features [3.747737951407512]
監視ビデオと画像の低解像度特徴は、高解像度の顔認識アルゴリズムが効果的な特徴情報を抽出することを困難にしている。
密集都市化の時代には、セキュリティ監視における顔認証がますます重要になるため、低解像度監視カメラが生み出す映像フレームの処理に十分な性能を発揮できるアルゴリズムを開発することが不可欠である。
本稿では,同種低分解能監視ビデオの相関特徴に基づく顔認識(CoFFaR)手法について,その理論,実験の詳細,実験結果について詳しく述べる。
論文 参考訳(メタデータ) (2021-11-25T17:11:52Z) - Harnessing Unrecognizable Faces for Face Recognition [87.80037162457427]
本稿では,顔画像の認識可能性の尺度を提案し,主に認識可能なアイデンティティを用いて訓練されたディープニューラルネットワークによって実現された。
FAR=1e-5において,認識可能性を考慮した場合,単画像認識の誤り率を58%減少させることを示す。
論文 参考訳(メタデータ) (2021-06-08T05:25:03Z) - Face recognition using PCA integrated with Delaunay triangulation [0.0]
本研究は,主成分分析とDlaunay Triangulationの統合について検討した。
この方法は、一組の顔ランドマークポイントを三角測量し、提供された画像の固有顔を取得する。
アルゴリズムを従来のPCAと比較し、有効な認識率を提供するために、異なる顔のランドマークポイントを含めることについて議論する。
論文 参考訳(メタデータ) (2020-11-25T14:46:08Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
本研究では,顔認識システムのセキュリティ脆弱性としての表情バイアスについて検討する。
本稿では,表情バイアスが顔認識技術の性能に与える影響を包括的に分析する。
論文 参考訳(メタデータ) (2020-11-17T18:12:41Z) - The Elements of End-to-end Deep Face Recognition: A Survey of Recent
Advances [56.432660252331495]
顔認識はコンピュータビジョンにおいて最も人気があり、長く続いたトピックの1つである。
ディープフェイス認識は目覚ましい進歩を遂げ、多くの現実世界のアプリケーションで広く利用されている。
本稿では,各要素の最近の進歩を概観する。
論文 参考訳(メタデータ) (2020-09-28T13:02:17Z) - On the Robustness of Face Recognition Algorithms Against Attacks and
Bias [78.68458616687634]
顔認識アルゴリズムは非常に高い認識性能を示しており、現実のアプリケーションに適していることを示唆している。
精度が向上したにもかかわらず、これらのアルゴリズムの攻撃や偏見に対する堅牢性は問題視されている。
本稿では,顔認識アルゴリズムの頑健性に挑戦する様々な方法について要約する。
論文 参考訳(メタデータ) (2020-02-07T18:21:59Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
最新のオープンソースの顔認識システムであるArcFaceを、100万枚以上の散らばった画像を用いた大規模な顔識別実験で監査する。
モデルのトレーニングデータには79.71%、存在しない人には75.73%のランク1顔認証精度がある。
論文 参考訳(メタデータ) (2020-01-09T15:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。