論文の概要: Improving Classification Neural Networks by using Absolute activation
function (MNIST/LeNET-5 example)
- arxiv url: http://arxiv.org/abs/2304.11758v1
- Date: Sun, 23 Apr 2023 22:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 16:26:37.130280
- Title: Improving Classification Neural Networks by using Absolute activation
function (MNIST/LeNET-5 example)
- Title(参考訳): 絶対活性化関数による分類ニューラルネットワークの改善(MNIST/LeNET-5例)
- Authors: Oleg I.Berngardt
- Abstract要約: ディープネットワークでは絶対的活性化は消滅や爆発的な勾配を引き起こしないため、絶対的活性化は単純なニューラルネットワークとディープニューラルネットワークの両方で使用できる。
Absolute アクティベーションに基づく LeNet のようなアーキテクチャで MNIST 問題を解くことで,予測精度を向上させることにより,ニューラルネットワーク内のトレーニングパラメータの数を著しく削減できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper discusses the use of the Absolute activation function in
classification neural networks. An examples are shown of using this activation
function in simple and more complex problems. Using as a baseline LeNet-5
network for solving the MNIST problem, the efficiency of Absolute activation
function is shown in comparison with the use of Tanh, ReLU and SeLU
activations. It is shown that in deep networks Absolute activation does not
cause vanishing and exploding gradients, and therefore Absolute activation can
be used in both simple and deep neural networks. Due to high volatility of
training networks with Absolute activation, a special modification of ADAM
training algorithm is used, that estimates lower bound of accuracy at any test
dataset using validation dataset analysis at each training epoch, and uses this
value to stop/decrease learning rate, and re-initializes ADAM algorithm between
these steps. It is shown that solving the MNIST problem with the LeNet-like
architectures based on Absolute activation allows to significantly reduce the
number of trained parameters in the neural network with improving the
prediction accuracy.
- Abstract(参考訳): 本稿では,ニューラルネットワークの分類における絶対活性化関数の利用について論じる。
この活性化関数を、より単純で複雑な問題に応用する例を示す。
mnist問題の解法としてlenet-5ネットワークを用いて,tanh,relu,seluアクティベーションを用いた場合と比較して,絶対活性化関数の効率を示す。
ディープネットワークでは絶対的活性化は消滅や爆発的な勾配を引き起こしないため、絶対的活性化は単純なニューラルネットワークとディープニューラルネットワークの両方で使用できる。
絶対活性化を伴うトレーニングネットワークのボラティリティが高いため、各トレーニング期間の検証データセット分析を用いて、任意のテストデータセットにおける精度の低さを推定し、この値を用いて学習速度の停止/減算を行い、これらのステップ間でadamアルゴリズムを再初期化するadamトレーニングアルゴリズムの特別な修正が使用される。
Absolute アクティベーションに基づく LeNet のようなアーキテクチャで MNIST 問題を解くことで,予測精度を向上させることにより,ニューラルネットワーク内のトレーニングパラメータの数を著しく削減できることが示されている。
関連論文リスト
- ENN: A Neural Network with DCT Adaptive Activation Functions [2.2713084727838115]
離散コサイン変換(DCT)を用いて非線形活性化関数をモデル化する新しいモデルであるExpressive Neural Network(ENN)を提案する。
このパラメータ化は、トレーニング可能なパラメータの数を低く保ち、勾配ベースのスキームに適合し、異なる学習タスクに適応する。
ENNのパフォーマンスは、いくつかのシナリオにおいて40%以上の精度のギャップを提供する、アートベンチマークの状態を上回ります。
論文 参考訳(メタデータ) (2023-07-02T21:46:30Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Consensus Function from an $L_p^q-$norm Regularization Term for its Use
as Adaptive Activation Functions in Neural Networks [0.0]
本稿では,学習過程においてその形状に適応する暗黙的,パラメトリックな非線形活性化関数の定義と利用を提案する。
この事実は、ネットワーク内で最適化するパラメータの空間を増大させるが、柔軟性を高め、ニューラルネットワークの概念を一般化する。
予備的な結果は、この種の適応的アクティベーション関数によるニューラルネットワークの使用は、回帰や分類の例における誤差を減少させることを示している。
論文 参考訳(メタデータ) (2022-06-30T04:48:14Z) - Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic [137.04558017227583]
ニューラルネットワークによって強化されたアクター・クリティカル(AC)アルゴリズムは、近年、かなりの成功を収めている。
我々は,特徴量に基づくニューラルACの進化と収束について,平均場の観点から考察する。
神経性交流は,大域的最適政策をサブ線形速度で求める。
論文 参考訳(メタデータ) (2021-12-27T06:09:50Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
認証された堅牢性は、安全クリティカルなアプリケーションにおいて、ディープニューラルネットワークにとって望ましい性質である。
提案手法は,MNISTおよびTinyNetデータセットにおける最先端の手法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-11-02T06:44:10Z) - Otimizacao de pesos e funcoes de ativacao de redes neurais aplicadas na
previsao de series temporais [0.0]
本稿では,ニューラルネットワークにおける自由パラメータ非対称活性化関数群の利用を提案する。
定義された活性化関数の族は普遍近似定理の要求を満たすことを示す。
ニューラルネットワークの処理ユニット間の接続の重み付けと自由パラメータを用いたこの活性化関数系のグローバル最適化手法を用いる。
論文 参考訳(メタデータ) (2021-07-29T23:32:15Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Cooperative Initialization based Deep Neural Network Training [35.14235994478142]
本手法では,ネットワークのトレーニング中に,全ての重みパラメータの更新に複数のアクティベーション関数を用いる。
提案手法は,様々なベースラインに優れ,同時に分類や検出など,さまざまなタスクに対して優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-01-05T14:08:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。