論文の概要: Improving Knowledge Distillation via Transferring Learning Ability
- arxiv url: http://arxiv.org/abs/2304.11923v2
- Date: Mon, 18 Sep 2023 12:30:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 00:10:57.006471
- Title: Improving Knowledge Distillation via Transferring Learning Ability
- Title(参考訳): 伝達学習能力による知識蒸留の改善
- Authors: Long Liu, Tong Li, Hui Cheng
- Abstract要約: 既存の知識蒸留法では、学生ネットワークがよく訓練された教師からのみ学習する、教師-学生のアプローチが一般的である。
このアプローチは、教師と生徒のネットワーク間の学習能力の固有の相違を見落とし、キャパシティギャップの問題を引き起こす。
この制限に対処するために,SLKDと呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 15.62306809592042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing knowledge distillation methods generally use a teacher-student
approach, where the student network solely learns from a well-trained teacher.
However, this approach overlooks the inherent differences in learning abilities
between the teacher and student networks, thus causing the capacity-gap
problem. To address this limitation, we propose a novel method called SLKD.
- Abstract(参考訳): 既存の知識蒸留法では、一般的に、生徒ネットワークが訓練された教師からのみ学習する教師・生徒のアプローチを用いる。
しかし,本手法は,教師と生徒のネットワーク間の学習能力に固有の違いを見落とし,能力ギャップの問題を引き起こす。
この制限に対処するため,SLKDと呼ばれる新しい手法を提案する。
関連論文リスト
- Tailoring Instructions to Student's Learning Levels Boosts Knowledge Distillation [52.53446712834569]
LGTM(Learning Good Teacher Matters)は,教師の学習プロセスに蒸留の影響を組み込むための効果的な訓練手法である。
我々のLGTMはGLUEベンチマークで6つのテキスト分類タスクに基づいて10の共通知識蒸留基準を上回ります。
論文 参考訳(メタデータ) (2023-05-16T17:50:09Z) - Improved Knowledge Distillation via Adversarial Collaboration [2.373824287636486]
小学生モデルは、大きく訓練された教師モデルの知識を活用するために訓練される。
教師と生徒の能力格差のため、生徒の成績は教師のレベルに達することは困難である。
本稿では, 知識蒸留の性能を効果的に向上させる, ACKD (Adversarial Collaborative Knowledge Distillation) 法を提案する。
論文 参考訳(メタデータ) (2021-11-29T07:20:46Z) - Fixing the Teacher-Student Knowledge Discrepancy in Distillation [72.4354883997316]
本稿では,教師の知識を学生とより整合させる,新たな学生依存型蒸留法である知識一貫型蒸留を提案する。
この手法は非常に柔軟で,他の最先端手法と容易に組み合わせることができる。
論文 参考訳(メタデータ) (2021-03-31T06:52:20Z) - Student Network Learning via Evolutionary Knowledge Distillation [22.030934154498205]
教師知識の伝達効率を改善するための進化的知識蒸留手法を提案する。
進化的教師は、固定された予習教師の代わりにオンラインで学習され、学生ネットワーク学習を監督するために、中間的知識を継続的に伝達する。
このようにして、学生は豊富な内部知識を同時に獲得し、その成長過程を捉え、効果的なネットワーク学習につながる。
論文 参考訳(メタデータ) (2021-03-23T02:07:15Z) - Learning Student-Friendly Teacher Networks for Knowledge Distillation [50.11640959363315]
本研究では,教師から学生への暗黒知識の伝達を容易にする新しい知識蒸留手法を提案する。
事前教育を受けた教師に与えた学習モデルの効果的な学習方法のほとんどとは対照的に,学生に親しみやすい教師モデルを学ぶことを目的とする。
論文 参考訳(メタデータ) (2021-02-12T07:00:17Z) - Collaborative Teacher-Student Learning via Multiple Knowledge Transfer [79.45526596053728]
複数知識伝達(CTSL-MKT)による協調学習を提案する。
複数の学生が協調的な方法で個々のインスタンスとインスタンスの関係の両方から知識を学ぶことができます。
4つの画像データセットの実験とアブレーション研究は、提案したCTSL-MKTが最先端のKD法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-01-21T07:17:04Z) - Interactive Knowledge Distillation [79.12866404907506]
本稿では,効率的な知識蒸留のための対話型指導戦略を活用するために,対話型知識蒸留方式を提案する。
蒸留工程では,教師と学生のネットワーク間の相互作用を交換操作により行う。
教員ネットワークの典型的な設定による実験により,IAKDで訓練された学生ネットワークは,従来の知識蒸留法で訓練された学生ネットワークよりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-03T03:22:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
教師モデルの様々な層を流れる情報の流れをモデル化して機能する新しいKD手法を提案する。
提案手法は, トレーニング過程の異なる段階において, 適切な監督手法を用いて, 上記の制限を克服することができる。
論文 参考訳(メタデータ) (2020-05-02T06:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。