Optically-active spin defects in few-layer thick hexagonal boron nitride
- URL: http://arxiv.org/abs/2304.12071v2
- Date: Tue, 9 May 2023 09:28:15 GMT
- Title: Optically-active spin defects in few-layer thick hexagonal boron nitride
- Authors: A. Durand, T. Clua-Provost, F. Fabre, P. Kumar, J. Li, J. H. Edgar, P.
Udvarhelyi, A. Gali, X. Marie, C. Robert, J. M. G\'erard, B. Gil, G.
Cassabois, and V. Jacques
- Abstract summary: Optically-active spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of two-dimensional quantum sensing units.
We first demonstrate that the electron spin resonance frequencies of boron vacancy centres (V$_textB-$) can be detected optically in the limit of few-atomic-layer thick hBN flakes.
We then analyze the variations of the electronic spin properties of V$_textB-$ centres with the hBN thickness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optically-active spin defects in hexagonal boron nitride (hBN) are promising
quantum systems for the design of two-dimensional quantum sensing units
offering optimal proximity to the sample being probed. In this work, we first
demonstrate that the electron spin resonance frequencies of boron vacancy
centres (V$_\text{B}^-$) can be detected optically in the limit of
few-atomic-layer thick hBN flakes despite the nanoscale proximity of the
crystal surface that often leads to a degradation of the stability of
solid-state spin defects. We then analyze the variations of the electronic spin
properties of V$_\text{B}^-$ centres with the hBN thickness with a focus on (i)
the zero-field splitting parameters, (ii) the optically-induced spin
polarization rate and (iii) the longitudinal spin relaxation time. This work
provides important insights into the properties of V$_\text{B}^-$ centres
embedded in ultrathin hBN flakes, which are valuable for future developments of
foil-based quantum sensing technologies.
Related papers
- Quantum sensing and imaging with spin defects in hexagonal boron nitride [2.8409310270487538]
Color centers in hexagonal boron nitride (hBN) have emerged as promising candidates for a new wave of quantum applications.
The recently discovered optically addressable spin defects in hBN provide a quantum interface between photons and electron spins for quantum sensing applications.
This review summarizes the rapidly evolving field of nanoscale and microscale quantum sensing with spin defects in hBN.
arXiv Detail & Related papers (2023-02-22T06:21:28Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Characteristics of quantum emitters in hexagonal boron nitride suitable
for integration with nanophotonic platforms [6.56645008669449]
Single photon emitters in 2D hexagonal boron nitride (hBN) are promising solid-state quantum emitters for photonic applications and quantum networks.
We focus on two different kinds of hBN samples that particularly lend themselves for integration with nanophotonic devices.
arXiv Detail & Related papers (2022-10-20T08:51:03Z) - A first-principles calculation of electron-phonon interactions for the
$\text{C}_2\text{C}_\text{N}$ and $\text{V}_\text{N}\text{N}_\text{B}$
defects in hexagonal boron nitride [52.77024349608834]
Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest.
Recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature.
arXiv Detail & Related papers (2022-07-28T23:31:38Z) - Correlative nanoscale imaging of strained hBN spin defects [42.60602838972598]
Spin defects like the negatively charged boron vacancy color center ($V_B-$) in hexagonal boron nitride (hBN) may enable new forms of quantum sensing with near-surface defects in layered van der Waals heterostructures.
We reveal the effect of strain associated with creases in hBN flakes on $V_B-$ and $V_B$ color centers in hBN with correlative cathodoluminescence and photoluminescence microscopies.
arXiv Detail & Related papers (2022-03-18T17:42:09Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Nanofabricated and integrated colour centres in silicon carbide with
high-coherence spin-optical properties [1.3246119976070139]
We demonstrate nanoscale fabrication of silicon vacancy centres (VSi) in 4H-SiC without deterioration of their intrinsic spin-optical properties.
We show nearly transform limited photon emission and record spin coherence times for single defects generated via ion implantation and in triangular cross section waveguides.
For the latter, we show further controlled operations on nearby nuclear spin qubits, which is crucial for fault-tolerant quantum information distribution.
arXiv Detail & Related papers (2021-09-10T08:42:14Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.