Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride
- URL: http://arxiv.org/abs/2106.02975v1
- Date: Sat, 5 Jun 2021 21:53:44 GMT
- Title: Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride
- Authors: Yanan Wang, Jaesung Lee, Jesse Berezovsky, and Philip X.-L. Feng
- Abstract summary: We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
- Score: 6.352389759470726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hexagonal boron nitride (h-BN), a prevalent insulating crystal for dielectric
and encapsulation layers in two-dimensional (2D) nanoelectronics and a
structural material in 2D nanoelectromechanical systems (NEMS), has also
rapidly emerged as a promising platform for quantum photonics with the recent
discovery of optically active defect centers and associated spin states.
Combined with measured emission characteristics, here we propose and
numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme
incorporating these defect-enabled single photon emitters (SPEs) in h-BN
microdisk resonators. The whispering-gallery nature of microdisks can support
multiple families of cavity resonances with different radial and azimuthal mode
indices simultaneously, overcoming the challenges in coinciding a single point
defect with the maximum electric field of an optical mode both spatially and
spectrally. The excellent characteristics of h-BN SPEs, including exceptional
emission rate, considerably high Debye-Waller factor, and Fourier transform
limited linewidth at room temperature, render strong coupling with the ratio of
coupling to decay rates g/max({\gamma},\k{appa}) predicated as high as 500.
This study not only provides insight into the emitter-cavity interaction, but
also contributes toward realizing h-BN photonic components, such as
low-threshold microcavity lasers and high-purity single photon sources,
critical for linear optics quantum computing and quantum networking
applications.
Related papers
- Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Plasmon Enhanced Quantum Properties of Single Photon Emitters with
Hybrid Hexagonal Boron Nitride Silver Nanocube Systems [0.0]
Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of single photon emitters (SPEs)
We study the quantum single photon properties of hybrid nanophotonic structures composed of SPEs created in ultrathin hBN flakes and plasmonic silver nanocubes.
arXiv Detail & Related papers (2023-04-01T13:52:16Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Cavity-Enhanced 2D Material Quantum Emitters Deterministically
Integrated with Silicon Nitride Microresonators [0.3518016233072556]
Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters.
We demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators.
arXiv Detail & Related papers (2022-06-29T18:16:38Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Optical superradiance of a pair of color centers in an integrated
silicon-carbide-on-insulator microresonator [1.4085555227308877]
We report on the integration of near-transform-limited silicon defects into microdisk resonators fabricated in a CMOS-compatible 4H-Silicon Carbide-on-Insulator platform.
We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode.
arXiv Detail & Related papers (2022-02-10T05:33:28Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - High-Speed Tunable Microcavities Coupled to Rare-Earth Quantum Emitters [0.0]
Lithium niobate on insulator (LNOI) is an emerging platform for on-chip photonics.
We incorporate single rare-earth ions (REI) quantum emitters in electro-optical tunable lithium niobite (LN) thin films.
We demonstrate control of LN microcavities coupled to REI over a frequency range of 160 GHz with 5 mus switching speed.
arXiv Detail & Related papers (2021-04-01T10:49:00Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.