Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of
LLMs with Self-Information-Based Content Filtering
- URL: http://arxiv.org/abs/2304.12102v1
- Date: Mon, 24 Apr 2023 13:55:47 GMT
- Title: Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of
LLMs with Self-Information-Based Content Filtering
- Authors: Yucheng Li
- Abstract summary: This paper proposes a method called textitSelective Context that employs self-information to filter out less informative content.
We demonstrate the effectiveness of our approach on tasks of summarisation and question answering across different data sources.
- Score: 4.1372815372396525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have received significant attention by achieving
remarkable performance across various tasks. However, their fixed context
length poses challenges when processing long documents or maintaining extended
conversations. This paper proposes a method called \textit{Selective Context}
that employs self-information to filter out less informative content, thereby
enhancing the efficiency of the fixed context length. We demonstrate the
effectiveness of our approach on tasks of summarisation and question answering
across different data sources, including academic papers, news articles, and
conversation transcripts.
Related papers
- Rethinking Visual Dependency in Long-Context Reasoning for Large Vision-Language Models [62.698520962933195]
Large Vision-Language Models (LVLMs) excel in cross-model tasks but experience performance declines in long-context reasoning.
We propose a novel training-free context pruning method that selectively removes less critical textual information.
arXiv Detail & Related papers (2024-10-25T17:59:09Z) - FltLM: An Intergrated Long-Context Large Language Model for Effective Context Filtering and Understanding [32.197113821638936]
We propose a novel integrated Long-Context Large Language Model (FltLM)
FltLM incorporates a context filter with a soft mask mechanism, identifying and dynamically excluding irrelevant content to concentrate on pertinent information.
Experimental results demonstrate that FltLM significantly outperforms supervised fine-tuning and retrieval-based methods in complex QA scenarios.
arXiv Detail & Related papers (2024-10-09T13:47:50Z) - SEGMENT+: Long Text Processing with Short-Context Language Models [53.40059130780192]
SEGMENT+ is a framework that enables LMs to handle extended inputs within limited context windows efficiently.
SEGMENT+ utilizes structured notes and a filtering module to manage information flow, resulting in a system that is both controllable and interpretable.
arXiv Detail & Related papers (2024-10-09T03:40:22Z) - Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
We introduce the Long Question Coreference Adaptation (LQCA) method to enhance the performance of large language models (LLMs)
This framework focuses on coreference resolution tailored to long contexts, allowing the model to identify and manage references effectively.
The framework provides easier-to-handle partitions for LLMs, promoting better understanding.
arXiv Detail & Related papers (2024-10-02T15:39:55Z) - DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels [89.51834016940153]
We introduce DetectiveQA, a narrative reasoning benchmark with an average context length of over 100K tokens.
We use detective novels as data sources, which naturally have various reasoning elements.
We manually annotated 600 questions in Chinese and then also provided an English edition of the context information and questions.
arXiv Detail & Related papers (2024-09-04T06:28:22Z) - Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
This paper introduces EYEGLAXS, a framework that leverages Large Language Models (LLMs) for extractive summarization.
EYEGLAXS focuses on extractive summarization to ensure factual and grammatical integrity.
The system sets new performance benchmarks on well-known datasets like PubMed and ArXiv.
arXiv Detail & Related papers (2024-08-28T13:52:19Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of large language models (LLMs)
Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers.
We present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
arXiv Detail & Related papers (2024-05-28T09:12:44Z) - Thread of Thought Unraveling Chaotic Contexts [133.24935874034782]
"Thread of Thought" (ThoT) strategy draws inspiration from human cognitive processes.
In experiments, ThoT significantly improves reasoning performance compared to other prompting techniques.
arXiv Detail & Related papers (2023-11-15T06:54:44Z) - Walking Down the Memory Maze: Beyond Context Limit through Interactive
Reading [63.93888816206071]
We introduce MemWalker, a method that processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information.
We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.
arXiv Detail & Related papers (2023-10-08T06:18:14Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.