論文の概要: Machine Learning-based Methods for Joint {Detection-Channel Estimation}
in OFDM Systems
- arxiv url: http://arxiv.org/abs/2304.12189v1
- Date: Sat, 8 Apr 2023 19:30:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 07:49:13.413567
- Title: Machine Learning-based Methods for Joint {Detection-Channel Estimation}
in OFDM Systems
- Title(参考訳): OFDMシステムにおける関節検出チャネル推定のための機械学習手法
- Authors: Wilson de Souza Junior, Taufik Abrao
- Abstract要約: OFDMシステムにおける共同検出チャネル推定のための機械学習(ML)に基づく2つの構造を提案し,広範囲に評価した。
ビットエラーレート(BER)性能と計算複雑性のトレードオフを解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, two machine learning (ML)-based structures for joint
detection-channel estimation in OFDM systems are proposed and extensively
characterized. Both ML architectures, namely Deep Neural Network (DNN) and
Extreme Learning Machine (ELM), are developed {to provide improved data
detection performance} and compared with the conventional matched filter (MF)
detector equipped with the minimum mean square error (MMSE) and least square
(LS) channel estimators. The bit-error-rate (BER) performance vs. computational
complexity trade-off is analyzed, demonstrating the superiority of the proposed
DNN-OFDM and ELM-OFDM detectors methodologies.
- Abstract(参考訳): 本研究では,OFDMシステムにおける共同検出チャネル推定のための機械学習(ML)に基づく2つの構造を提案する。
MLアーキテクチャ、すなわちDeep Neural Network (DNN) とExtreme Learning Machine (ELM) の両方を開発し、最小平均二乗誤差 (MMSE) と最小二乗チャネル推定器 (LS) を備えた従来のマッチングフィルタ (MF) 検出器と比較した。
ビットエラーレート(ber)性能と計算複雑性のトレードオフを解析し、提案手法であるdnn-ofdmおよびelm-ofdm検出器の優位性を示す。
関連論文リスト
- An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFSおよびOFDM波形は、レガシーアーキテクチャの再利用、レシーバ設計の単純さ、低複雑さ検出の利点を享受する。
本稿では,送信機におけるOTFSまたはOFDM信号処理チェーンと受信機とを切り替えて,平均二乗誤差(MSE)性能を最適化するディープニューラルネットワーク(DNN)に基づく適応方式を提案する。
論文 参考訳(メタデータ) (2023-09-04T02:33:44Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Detect to Learn: Structure Learning with Attention and Decision Feedback
for MIMO-OFDM Receive Processing [25.66317464603635]
本稿では、パイロットシンボルを効率的に利用し、検出されたペイロードデータで動的に更新できるオンラインアテンションベースのアプローチであるRC-AttStructNet-DFを提案する。
DF機構は、検出されたデータシンボルを介してチャネル変化を動的に追跡することにより、検出性能をさらに向上する。
論文 参考訳(メタデータ) (2022-08-17T20:01:05Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - A Survey of Applied Machine Learning Techniques for Optical OFDM based
Networks [0.0]
光周波数分割多重化(O-OFDM)に基づく光通信のための最新の機械学習(ML)技術について分析する。
例えば、MLは変調率の低い信号品質を改善するか、決定論とパラメトリック誘導非線形性の両方に取り組むことができる。
O-OFDM伝送性能と計算複雑性の両面から,教師なしおよび教師なしのML手法を解析した。
論文 参考訳(メタデータ) (2021-05-07T14:29:25Z) - State and Topology Estimation for Unobservable Distribution Systems
using Deep Neural Networks [8.673621107750652]
リアルタイムオブザーバビリティが制限されているため,再構成可能な分散ネットワークの時間同期状態推定は困難である。
本論文では,深層学習(DL)に基づくトポロジー同定(TI)と不均衡な3相分布系状態推定(DSSE)の手法を定式化する。
2つのディープニューラルネットワーク(DNN)は、同期失調症測定装置(SMD)によって不完全に観察されるシステムに対して、TIおよびDSSEを実装するために順次動作するように訓練されます。
論文 参考訳(メタデータ) (2021-04-15T02:46:50Z) - DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
Uncertainty Inference [52.899219617256655]
本稿では、ディープニューラルネットワーク(DNN)に基づく画像認識において、ベイズ推定に基づく不確実性推論(UI)を改善するための二重教師付き不確実性推論(DS-UI)フレームワークを提案する。
DS-UIでは、最後の完全連結(FC)層とガウス混合モデル(MoGMM)を組み合わせ、MoGMM-FC層を得る。
実験の結果,DS-UIは誤分類検出において最先端のUI手法よりも優れていた。
論文 参考訳(メタデータ) (2020-11-17T12:35:02Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z) - ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs [0.0]
本稿では,信号検出に使用するLevenberg-Marquardtアルゴリズムを用いて,多層ニューラルネットワーク(ANN)を提案する。
本研究では,受信機におけるチャネル状態情報を知ることなく,データシンボル推定を行うブラインド検出方式を検討する。
論文 参考訳(メタデータ) (2020-01-31T03:38:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。