Machine Learning-based Methods for Joint {Detection-Channel Estimation}
in OFDM Systems
- URL: http://arxiv.org/abs/2304.12189v1
- Date: Sat, 8 Apr 2023 19:30:23 GMT
- Title: Machine Learning-based Methods for Joint {Detection-Channel Estimation}
in OFDM Systems
- Authors: Wilson de Souza Junior, Taufik Abrao
- Abstract summary: Two machine learning (ML)-based structures for joint detection-channel estimation in OFDM systems are proposed and extensively characterized.
The bit-error-rate (BER) performance vs. computational complexity trade-off is analyzed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, two machine learning (ML)-based structures for joint
detection-channel estimation in OFDM systems are proposed and extensively
characterized. Both ML architectures, namely Deep Neural Network (DNN) and
Extreme Learning Machine (ELM), are developed {to provide improved data
detection performance} and compared with the conventional matched filter (MF)
detector equipped with the minimum mean square error (MMSE) and least square
(LS) channel estimators. The bit-error-rate (BER) performance vs. computational
complexity trade-off is analyzed, demonstrating the superiority of the proposed
DNN-OFDM and ELM-OFDM detectors methodologies.
Related papers
- An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFS and OFDM waveforms enjoy the benefits of the reuse of legacy architectures, simplicity of receiver design, and low-complexity detection.
We propose a deep neural network (DNN)-based adaptation scheme to switch between using either an OTFS or OFDM signal processing chain at the transmitter and receiver for optimal mean-squared-error (MSE) performance.
arXiv Detail & Related papers (2023-09-04T02:33:44Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Detect to Learn: Structure Learning with Attention and Decision Feedback
for MIMO-OFDM Receive Processing [25.66317464603635]
This paper introduces an online attention-based approach, namely RC-AttStructNet-DF, that can efficiently utilize pilot symbols and be dynamically updated with the detected payload data.
The DF mechanism further enhances detection performance by dynamically tracking the channel changes through detected data symbols.
arXiv Detail & Related papers (2022-08-17T20:01:05Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - A Survey of Applied Machine Learning Techniques for Optical OFDM based
Networks [0.0]
We analyze the newest machine learning (ML) techniques for optical frequency division multiplexing (O-OFDM)-based optical communications.
For instance, ML can improve the signal quality under low modulation ratio or can tackle both determinist and parametric-induced nonlinearities.
Supervised and unsupervised ML techniques are analyzed in terms of both O-OFDM transmission performance and computational complexity.
arXiv Detail & Related papers (2021-05-07T14:29:25Z) - State and Topology Estimation for Unobservable Distribution Systems
using Deep Neural Networks [8.673621107750652]
Time-synchronized state estimation for reconfigurable distribution networks is challenging because of limited real-time observability.
This paper formulates a deep learning (DL)-based approach for topology identification (TI) and unbalanced three-phase distribution system state estimation (DSSE)
Two deep neural networks (DNNs) are trained to operate in a sequential manner for implementing TI and DSSE for systems that are incompletely observed by synchrophasor measurement devices (SMDs)
arXiv Detail & Related papers (2021-04-15T02:46:50Z) - DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
Uncertainty Inference [52.899219617256655]
We propose a dual-supervised uncertainty inference (DS-UI) framework for improving Bayesian estimation-based uncertainty inference (UI) in deep neural network (DNN)-based image recognition.
In the DS-UI, we combine the last fully-connected (FC) layer with a mixture of Gaussian mixture models (MoGMM) to obtain an MoGMM-FC layer.
Experimental results show the DS-UI outperforms the state-of-the-art UI methods in misclassification detection.
arXiv Detail & Related papers (2020-11-17T12:35:02Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z) - ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs [0.0]
We propose a multi-layer artificial neural network (ANN) that is trained with the Levenberg-Marquardt algorithm for use in signal detection.
We consider a blind detection scheme where data symbol estimation is carried out without knowing the channel state information at the receiver.
arXiv Detail & Related papers (2020-01-31T03:38:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.