ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs
- URL: http://arxiv.org/abs/2001.11643v1
- Date: Fri, 31 Jan 2020 03:38:42 GMT
- Title: ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs
- Authors: Shabnam Rezaei and Sofiene Affes
- Abstract summary: We propose a multi-layer artificial neural network (ANN) that is trained with the Levenberg-Marquardt algorithm for use in signal detection.
We consider a blind detection scheme where data symbol estimation is carried out without knowing the channel state information at the receiver.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a multi-layer artificial neural network (ANN) that
is trained with the Levenberg-Marquardt algorithm for use in signal detection
over multiple-input multiple-output orthogonal frequency-division multiplexing
(MIMO-OFDM) systems, particularly those with low-resolution analog-to-digital
converters (LR-ADCs). We consider a blind detection scheme where data symbol
estimation is carried out without knowing the channel state information at the
receiver (CSIR)---in contrast to classical algorithms. The main power of the
proposed ANN-based detector (ANND) lies in its versatile use with any
modulation scheme, blindly, yet without a change in its structure. We compare
by simulations this new receiver with conventional ones, namely, the maximum
likelihood (ML), minimum mean square error (MMSE), and zero-forcing (ZF), in
terms of symbol error rate (SER) performance. Results suggest that ANND
approaches ML at much lower complexity, outperforms ZF over the entire range of
assessed signal-to-noise ratio (SNR) values, and so does it also, though, with
the MMSE over different SNR ranges.
Related papers
- Deep Learning Assisted Multiuser MIMO Load Modulated Systems for
Enhanced Downlink mmWave Communications [68.96633803796003]
This paper is focused on multiuser load modulation arrays (MU-LMAs) which are attractive due to their low system complexity and reduced cost for millimeter wave (mmWave) multi-input multi-output (MIMO) systems.
The existing precoding algorithm for downlink MU-LMA relies on a sub-array structured (SAS) transmitter which may suffer from decreased degrees of freedom and complex system configuration.
In this paper, we conceive an MU-LMA system employing a full-array structured (FAS) transmitter and propose two algorithms accordingly.
arXiv Detail & Related papers (2023-11-08T08:54:56Z) - An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFS and OFDM waveforms enjoy the benefits of the reuse of legacy architectures, simplicity of receiver design, and low-complexity detection.
We propose a deep neural network (DNN)-based adaptation scheme to switch between using either an OTFS or OFDM signal processing chain at the transmitter and receiver for optimal mean-squared-error (MSE) performance.
arXiv Detail & Related papers (2023-09-04T02:33:44Z) - Machine Learning-based Methods for Joint {Detection-Channel Estimation}
in OFDM Systems [0.0]
Two machine learning (ML)-based structures for joint detection-channel estimation in OFDM systems are proposed and extensively characterized.
The bit-error-rate (BER) performance vs. computational complexity trade-off is analyzed.
arXiv Detail & Related papers (2023-04-08T19:30:23Z) - A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection in OFDM Systems [11.190815358585137]
Joint channel estimation and signal detection is crucial in frequency division multiplexing systems.
Traditional algorithms perform poorly in low signal-to-noise ratio (SNR) scenarios.
Deep learning (DL) methods have been investigated, but concerns regarding computational expense and lack of validation in low-SNR settings remain.
arXiv Detail & Related papers (2023-03-07T06:34:04Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Neural Network-based OFDM Receiver for Resource Constrained IoT Devices [44.8697473676516]
We explore a novel, modular Machine Learning (ML)-based receiver chain design for the Internet of Things (IoT)
ML blocks replace the individual processing blocks of an OFDM receiver, and we describe this swapping for the legacy channel estimation, symbol demapping, and decoding blocks with Neural Networks (NNs)
Our evaluations demonstrate that the proposed modular NN-based receiver improves bit error rate of the traditional non-ML receiver by averagely 61% and 10% for the simulated and over-the-air datasets, respectively.
arXiv Detail & Related papers (2022-05-12T15:32:35Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - Time-Frequency Analysis based Blind Modulation Classification for
Multiple-Antenna Systems [6.011027400738812]
Blind modulation classification is an important step to implement cognitive radio networks.
The multiple-input multiple-output (MIMO) technique is widely used in military and civil communication systems.
Traditional likelihood-based and feature-based approaches cannot be applied in these scenarios.
arXiv Detail & Related papers (2020-04-01T12:27:29Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.