Segment Anything in Medical Images
- URL: http://arxiv.org/abs/2304.12306v3
- Date: Mon, 1 Apr 2024 16:18:16 GMT
- Title: Segment Anything in Medical Images
- Authors: Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, Bo Wang,
- Abstract summary: We present MedSAM, a foundation model designed for enabling universal medical image segmentation.
The model is developed on a large-scale medical image dataset with 1,570,263 image-mask pairs, covering 10 imaging modalities and over 30 cancer types.
- Score: 21.43661408153244
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image segmentation is a critical component in clinical practice, facilitating accurate diagnosis, treatment planning, and disease monitoring. However, existing methods, often tailored to specific modalities or disease types, lack generalizability across the diverse spectrum of medical image segmentation tasks. Here we present MedSAM, a foundation model designed for bridging this gap by enabling universal medical image segmentation. The model is developed on a large-scale medical image dataset with 1,570,263 image-mask pairs, covering 10 imaging modalities and over 30 cancer types. We conduct a comprehensive evaluation on 86 internal validation tasks and 60 external validation tasks, demonstrating better accuracy and robustness than modality-wise specialist models. By delivering accurate and efficient segmentation across a wide spectrum of tasks, MedSAM holds significant potential to expedite the evolution of diagnostic tools and the personalization of treatment plans.
Related papers
- iMedImage Technical Report [5.0953390013898705]
Chromosome karyotype analysis is crucial for diagnosing hereditary diseases, yet detecting structural abnormalities remains challenging.
We developed iMedImage, an end-to-end model for general medical image recognition, demonstrating strong performance across multiple imaging tasks.
arXiv Detail & Related papers (2025-03-27T03:25:28Z) - Self-Attention Diffusion Models for Zero-Shot Biomedical Image Segmentation: Unlocking New Frontiers in Medical Imaging [0.0]
This paper introduces the Diffusion Attention Zero-shot Unsupervised System (ADZUS), a novel approach for zero-shot biomedical image segmentation.
ADZUS harnesses the intrinsic capabilities of pre-trained diffusion models, utilizing their generative and discriminative potentials to segment medical images.
Experimental results across various medical imaging datasets, including skin lesion segmentation, chest X-ray infection segmentation, and white blood cell segmentation, reveal that ADZUS achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-03-23T18:47:12Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.
We propose a novel continual learning-driven CT model that can segment complete anatomies.
Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - Dynamically evolving segment anything model with continuous learning for medical image segmentation [50.92344083895528]
We introduce EvoSAM, a dynamically evolving medical image segmentation model.
EvoSAM continuously accumulates new knowledge from an ever-expanding array of scenarios and tasks.
Experiments conducted by surgical clinicians on blood vessel segmentation confirm that EvoSAM enhances segmentation efficiency based on user prompts.
arXiv Detail & Related papers (2025-03-08T14:37:52Z) - Panoptic Segmentation of Mammograms with Text-To-Image Diffusion Model [1.2130800774416757]
Vision-language diffusion models demonstrated outstanding performance in image generation and transferability to various downstream tasks.
We propose leveraging pretrained features from a Stable Diffusion model as inputs to a state-of-the-art panoptic segmentation architecture.
arXiv Detail & Related papers (2024-07-19T14:04:05Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - From CNN to Transformer: A Review of Medical Image Segmentation Models [7.3150850275578145]
Deep learning for medical image segmentation has become a prevalent trend.
In this paper, we conduct a survey of the most representative four medical image segmentation models in recent years.
We theoretically analyze the characteristics of these models and quantitatively evaluate their performance on two benchmark datasets.
arXiv Detail & Related papers (2023-08-10T02:48:57Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation [38.61227663176952]
We propose a shift towards universal medical image segmentation, a paradigm aiming to build medical image understanding foundation models.
We develop Hermes, a novel context-prior learning approach to address the challenges of data heterogeneity and annotation differences in medical image segmentation.
arXiv Detail & Related papers (2023-06-04T17:39:08Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Zero-shot performance of the Segment Anything Model (SAM) in 2D medical
imaging: A comprehensive evaluation and practical guidelines [0.13854111346209866]
Segment Anything Model (SAM) harnesses a massive training dataset to segment nearly any object.
Our findings reveal that SAM's zero-shot performance is not only comparable, but in certain cases, surpasses the current state-of-the-art.
We propose practical guidelines that require minimal interaction while consistently yielding robust outcomes.
arXiv Detail & Related papers (2023-04-28T22:07:24Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
We report quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks.
Our study indicates the versatility of generalist vision foundation models on medical imaging.
arXiv Detail & Related papers (2023-04-25T08:07:59Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.