論文の概要: A Study on Improving Realism of Synthetic Data for Machine Learning
- arxiv url: http://arxiv.org/abs/2304.12463v2
- Date: Fri, 28 Apr 2023 22:29:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 17:45:39.020754
- Title: A Study on Improving Realism of Synthetic Data for Machine Learning
- Title(参考訳): 機械学習のための合成データのリアリズム改善に関する研究
- Authors: Tingwei Shen, Ganning Zhao, Suya You
- Abstract要約: この研究は、合成レンダリングを、ラベルのない実世界のデータで条件付けられた汎用データセット上でより現実的なスタイルに変換する合成から現実への生成モデルを訓練し、評価することを目的としている。
- 参考スコア(独自算出の注目度): 6.806559012493756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic-to-real data translation using generative adversarial learning has
achieved significant success in improving synthetic data. Yet, limited studies
focus on deep evaluation and comparison of adversarial training on
general-purpose synthetic data for machine learning. This work aims to train
and evaluate a synthetic-to-real generative model that transforms the synthetic
renderings into more realistic styles on general-purpose datasets conditioned
with unlabeled real-world data. Extensive performance evaluation and comparison
have been conducted through qualitative and quantitative metrics and a defined
downstream perception task.
- Abstract(参考訳): 生成的対角学習を用いた合成-実データ変換は、合成データを改善する上で大きな成功を収めた。
しかし、限定的な研究は機械学習のための汎用合成データに対する敵意訓練の深い評価と比較に焦点を当てている。
本研究の目的は、合成レンダリングを、ラベルのない実世界のデータで条件付けられた汎用データセット上でより現実的なスタイルに変換する合成から現実への生成モデルを訓練し、評価することである。
定性的・定量的な測定値と、下流認識タスクによって、広範囲な性能評価と比較が行われた。
関連論文リスト
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - An evaluation framework for synthetic data generation models [3.3748750222488657]
高品質な合成データを開発するための合成データ生成モデルの能力を評価するための新しいフレームワークを提案する。
2つのユースケースシナリオは、合成データ生成モデルが高品質なデータを生成する能力を評価するための提案フレームワークの適用性を示す。
論文 参考訳(メタデータ) (2024-04-13T01:16:45Z) - Best Practices and Lessons Learned on Synthetic Data for Language Models [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
本研究では,合成データと実世界のデータとの等価性,実データに対する合成データの置換可能性,合成データ生成装置の柔軟性について検討する。
以上の結果から, 合成データによりモデル性能が向上するだけでなく, 実データへの置換性も向上し, 性能損失の60%から80%が置換可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-24T17:21:32Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [52.5766244206855]
本稿では,セマンティックセグメンテーションにおける信頼性を評価するために,データの自動合成を行う最先端生成モデルに挑戦する。
安定拡散を微調整することにより、OODドメインやOODオブジェクトに塗布された合成データのゼロショット生成を行う。
我々は,合成データの性能と実OODデータの性能との間に高い相関関係を示し,妥当性を示す。
論文 参考訳(メタデータ) (2023-12-14T18:56:07Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Synthetic Data Generation with Large Language Models for Text
Classification: Potential and Limitations [21.583825474908334]
本研究では,合成データに基づいて学習したモデルの性能が,分類の主観性によってどう変化するかを検討する。
その結果,主観性は,タスクレベルとインスタンスレベルの両方において,合成データに基づいて訓練されたモデルの性能と負の相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-10-11T19:51:13Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
合成から現実への変換学習は,実タスクのための合成画像と接地真実アノテーションを用いた事前学習を行うフレームワークである。
合成画像はデータの不足を克服するが、事前訓練されたモデルで微調整性能がどのようにスケールするかは定かではない。
我々は、合成事前学習データの様々なタスク、モデル、複雑さにおける学習曲線を一貫して記述する、単純で一般的なスケーリング法則を観察する。
論文 参考訳(メタデータ) (2021-08-25T02:29:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。