論文の概要: An evaluation framework for synthetic data generation models
- arxiv url: http://arxiv.org/abs/2404.08866v1
- Date: Sat, 13 Apr 2024 01:16:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:22:57.592028
- Title: An evaluation framework for synthetic data generation models
- Title(参考訳): 合成データ生成モデルの評価フレームワーク
- Authors: Ioannis E. Livieris, Nikos Alimpertis, George Domalis, Dimitris Tsakalidis,
- Abstract要約: 高品質な合成データを開発するための合成データ生成モデルの能力を評価するための新しいフレームワークを提案する。
2つのユースケースシナリオは、合成データ生成モデルが高品質なデータを生成する能力を評価するための提案フレームワークの適用性を示す。
- 参考スコア(独自算出の注目度): 3.3748750222488657
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nowadays, the use of synthetic data has gained popularity as a cost-efficient strategy for enhancing data augmentation for improving machine learning models performance as well as addressing concerns related to sensitive data privacy. Therefore, the necessity of ensuring quality of generated synthetic data, in terms of accurate representation of real data, consists of primary importance. In this work, we present a new framework for evaluating synthetic data generation models' ability for developing high-quality synthetic data. The proposed approach is able to provide strong statistical and theoretical information about the evaluation framework and the compared models' ranking. Two use case scenarios demonstrate the applicability of the proposed framework for evaluating the ability of synthetic data generation models to generated high quality data. The implementation code can be found in https://github.com/novelcore/synthetic_data_evaluation_framework.
- Abstract(参考訳): 近年、合成データの使用は、機械学習モデルの性能向上と、機密データプライバシに関する懸念に対処するために、データ拡張を強化するコスト効率の高い戦略として人気を集めている。
したがって、生成した合成データの質を保証する必要性は、実データの正確な表現の観点からも、最も重要な要素である。
本研究では,高品質な合成データを開発するための合成データ生成モデルの能力を評価するための新しいフレームワークを提案する。
提案手法は,評価フレームワークと比較モデルのランキングについて,統計的,理論的に強い情報を提供することができる。
2つのユースケースシナリオは、合成データ生成モデルが高品質なデータを生成する能力を評価するための提案フレームワークの適用性を示す。
実装コードはhttps://github.com/novelcore/synthetic_data_evaluation_frameworkで確認できる。
関連論文リスト
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Stable Diffusion Dataset Generation for Downstream Classification Tasks [4.470499157873342]
本稿では,Stable Diffusion 2.0モデルの合成データセット生成への応用について検討する。
本稿では,クラスエンコーダとキー生成パラメータの最適化を利用したクラス条件付きモデルを提案する。
その3分の1のケースでは、実際のデータセットでトレーニングされたデータセットよりも優れたパフォーマンスのモデルが生成されました。
論文 参考訳(メタデータ) (2024-05-04T15:37:22Z) - Best Practices and Lessons Learned on Synthetic Data for Language Models [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [52.5766244206855]
本稿では,セマンティックセグメンテーションにおける信頼性を評価するために,データの自動合成を行う最先端生成モデルに挑戦する。
安定拡散を微調整することにより、OODドメインやOODオブジェクトに塗布された合成データのゼロショット生成を行う。
我々は,合成データの性能と実OODデータの性能との間に高い相関関係を示し,妥当性を示す。
論文 参考訳(メタデータ) (2023-12-14T18:56:07Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
a) Howsoエンジンを導入し、(b)ランダムプロジェクションに基づく合成データ生成フレームワークを提案する。
Howsoエンジンが生成する合成データは、プライバシーと正確性に優れており、その結果、総合的なスコアが最高の結果となる。
提案するランダム・プロジェクション・ベース・フレームワークは,高い精度で合成データを生成することができ,スケーラビリティが最速である。
論文 参考訳(メタデータ) (2023-12-09T02:04:25Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
本稿では,合成データに対する統計的手法の有効性と,合成データのプライバシーリスクについて考察する。
この枠組みにおける重要な発見は、合成データに対する統計的手法の誤差率は、より多くの合成データを追加することで減少するが、最終的には上昇または安定化する可能性があることを明らかにする世代効果である。
論文 参考訳(メタデータ) (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - A Study on Improving Realism of Synthetic Data for Machine Learning [6.806559012493756]
この研究は、合成レンダリングを、ラベルのない実世界のデータで条件付けられた汎用データセット上でより現実的なスタイルに変換する合成から現実への生成モデルを訓練し、評価することを目的としている。
論文 参考訳(メタデータ) (2023-04-24T21:41:54Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。