A Multi-Task Approach to Robust Deep Reinforcement Learning for Resource
Allocation
- URL: http://arxiv.org/abs/2304.12660v1
- Date: Tue, 25 Apr 2023 09:05:36 GMT
- Title: A Multi-Task Approach to Robust Deep Reinforcement Learning for Resource
Allocation
- Authors: Steffen Gracla, Carsten Bockelmann, Armin Dekorsy
- Abstract summary: We look at a resource allocation challenge with rare, significant events which must be handled properly.
We integrate Elastic Weight Consolidation and Gradient Episodic Memory into a vanilla actor-critic scheduler.
We compare their performance in dealing with Black Swan Events with the state-of-the-art of augmenting the training data distribution.
- Score: 8.508198765617195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With increasing complexity of modern communication systems, machine learning
algorithms have become a focal point of research. However, performance demands
have tightened in parallel to complexity. For some of the key applications
targeted by future wireless, such as the medical field, strict and reliable
performance guarantees are essential, but vanilla machine learning methods have
been shown to struggle with these types of requirements. Therefore, the
question is raised whether these methods can be extended to better deal with
the demands imposed by such applications. In this paper, we look at a
combinatorial resource allocation challenge with rare, significant events which
must be handled properly. We propose to treat this as a multi-task learning
problem, select two methods from this domain, Elastic Weight Consolidation and
Gradient Episodic Memory, and integrate them into a vanilla actor-critic
scheduler. We compare their performance in dealing with Black Swan Events with
the state-of-the-art of augmenting the training data distribution and report
that the multi-task approach proves highly effective.
Related papers
- AdapMTL: Adaptive Pruning Framework for Multitask Learning Model [5.643658120200373]
AdapMTL is an adaptive pruning framework for multitask models.
It balances sparsity allocation and accuracy performance across multiple tasks.
It showcases superior performance compared to state-of-the-art pruning methods.
arXiv Detail & Related papers (2024-08-07T17:19:15Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
This paper extends the current research into missing modalities to the low-data regime.
It is often expensive to get full-modality data and sufficient annotated training samples.
We propose to use retrieval-augmented in-context learning to address these two crucial issues.
arXiv Detail & Related papers (2024-03-14T14:19:48Z) - M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation [0.7564784873669823]
We propose Multimodal Contrastive Unsupervised Reinforcement Learning (M2CURL)
Our approach employs a novel multimodal self-supervised learning technique that learns efficient representations and contributes to faster convergence of RL algorithms.
We evaluate M2CURL on the Tactile Gym 2 simulator and we show that it significantly enhances the learning efficiency in different manipulation tasks.
arXiv Detail & Related papers (2024-01-30T14:09:35Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
Quantifying uncertainty in the estimated tasks is of pivotal importance for many downstream applications, such as online or active learning.
We provide novel multitask confidence intervals in the challenging setting when neither the similarity between tasks nor the tasks' features are available to the learner.
We propose a novel online learning algorithm that achieves such improved regret without knowing this parameter in advance.
arXiv Detail & Related papers (2023-08-03T13:08:09Z) - Multi-Source Transfer Learning for Deep Model-Based Reinforcement
Learning [0.6445605125467572]
A crucial challenge in reinforcement learning is to reduce the number of interactions with the environment that an agent requires to master a given task.
Transfer learning proposes to address this issue by re-using knowledge from previously learned tasks.
The goal of this paper is to address these issues with modular multi-source transfer learning techniques.
arXiv Detail & Related papers (2022-05-28T12:04:52Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms.
We present MALib, a scalable and efficient computing framework for PB-MARL.
arXiv Detail & Related papers (2021-06-05T03:27:08Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.