AdapMTL: Adaptive Pruning Framework for Multitask Learning Model
- URL: http://arxiv.org/abs/2408.03913v1
- Date: Wed, 7 Aug 2024 17:19:15 GMT
- Title: AdapMTL: Adaptive Pruning Framework for Multitask Learning Model
- Authors: Mingcan Xiang, Steven Jiaxun Tang, Qizheng Yang, Hui Guan, Tongping Liu,
- Abstract summary: AdapMTL is an adaptive pruning framework for multitask models.
It balances sparsity allocation and accuracy performance across multiple tasks.
It showcases superior performance compared to state-of-the-art pruning methods.
- Score: 5.643658120200373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of multimedia and multimodal processing, the efficient handling of diverse data streams such as images, video, and sensor data is paramount. Model compression and multitask learning (MTL) are crucial in this field, offering the potential to address the resource-intensive demands of processing and interpreting multiple forms of media simultaneously. However, effectively compressing a multitask model presents significant challenges due to the complexities of balancing sparsity allocation and accuracy performance across multiple tasks. To tackle these challenges, we propose AdapMTL, an adaptive pruning framework for MTL models. AdapMTL leverages multiple learnable soft thresholds independently assigned to the shared backbone and the task-specific heads to capture the nuances in different components' sensitivity to pruning. During training, it co-optimizes the soft thresholds and MTL model weights to automatically determine the suitable sparsity level at each component to achieve both high task accuracy and high overall sparsity. It further incorporates an adaptive weighting mechanism that dynamically adjusts the importance of task-specific losses based on each task's robustness to pruning. We demonstrate the effectiveness of AdapMTL through comprehensive experiments on popular multitask datasets, namely NYU-v2 and Tiny-Taskonomy, with different architectures, showcasing superior performance compared to state-of-the-art pruning methods.
Related papers
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
In the Multi-task Learning (MTL) framework, every task demands distinct feature representations, ranging from low-level to high-level attributes.
This work introduces Layer-d Multi-Task models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario.
arXiv Detail & Related papers (2024-06-05T08:23:38Z) - MmAP : Multi-modal Alignment Prompt for Cross-domain Multi-task Learning [29.88567810099265]
Multi-task learning is designed to train multiple correlated tasks simultaneously.
To tackle this challenge, we integrate the decoder-free vision-language model CLIP.
We propose Multi-modal Alignment Prompt (MmAP) for CLIP, which aligns text and visual modalities during fine-tuning process.
arXiv Detail & Related papers (2023-12-14T03:33:02Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Controllable Pareto Multi-Task Learning [55.945680594691076]
A multi-task learning system aims at solving multiple related tasks at the same time.
With a fixed model capacity, the tasks would be conflicted with each other, and the system usually has to make a trade-off among learning all of them together.
This work proposes a novel controllable multi-task learning framework, to enable the system to make real-time trade-off control among different tasks with a single model.
arXiv Detail & Related papers (2020-10-13T11:53:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.