Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning
- URL: http://arxiv.org/abs/2304.12856v1
- Date: Tue, 25 Apr 2023 14:27:34 GMT
- Title: Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning
- Authors: Tariq M. Khan, Syed S. Naqvi, Antonio Robles-Kelly, Imran Razzak
- Abstract summary: We propose a Multi-resolution Contextual Network (MRC-Net) to learn contextual dependencies between semantically different features.
We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE.
- Score: 4.776465250559035
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Timely and affordable computer-aided diagnosis of retinal diseases is pivotal
in precluding blindness. Accurate retinal vessel segmentation plays an
important role in disease progression and diagnosis of such vision-threatening
diseases. To this end, we propose a Multi-resolution Contextual Network
(MRC-Net) that addresses these issues by extracting multi-scale features to
learn contextual dependencies between semantically different features and using
bi-directional recurrent learning to model former-latter and latter-former
dependencies. Another key idea is training in adversarial settings for
foreground segmentation improvement through optimization of the region-based
scores. This novel strategy boosts the performance of the segmentation network
in terms of the Dice score (and correspondingly Jaccard index) while keeping
the number of trainable parameters comparatively low. We have evaluated our
method on three benchmark datasets, including DRIVE, STARE, and CHASE,
demonstrating its superior performance as compared with competitive approaches
elsewhere in the literature.
Related papers
- Robust Divergence Learning for Missing-Modality Segmentation [6.144772447916824]
Multimodal Magnetic Resonance Imaging (MRI) provides essential complementary information for analyzing brain tumor subregions.
While methods using four common MRI modalities for automatic segmentation have shown success, they often face challenges with missing modalities due to image quality issues, inconsistent protocols, allergic reactions, or cost factors.
A novel single-modality parallel processing network framework based on H"older divergence and mutual information is introduced.
arXiv Detail & Related papers (2024-11-13T03:03:30Z) - ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism [12.469269425813607]
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke and is characterized by a high incidence of disability.
Existing approaches address these two tasks independently and predominantly focus on imaging data alone.
This paper introduces a multi-task network, ICH-SCNet, designed for both ICH segmentation and prognosis classification.
arXiv Detail & Related papers (2024-11-07T12:34:25Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
This thesis focuses on retinal blood vessel segmentation tasks.
It provides an extensive literature review of deep learning-based medical image segmentation approaches.
It proposes a novel efficient, simple multiview learning framework.
arXiv Detail & Related papers (2023-11-02T06:31:08Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images [0.0]
An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research.
A deep learning based method has been proposed and several customized modules have been integrated into the well-known encoder-decoder architecture U-net.
As a result, the proposed method outperforms the work of predecessors and achieves state-of-the-art performance in Sensitivity/Recall, F1-score and MCC.
arXiv Detail & Related papers (2021-03-25T06:10:47Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
The performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information.
We present the Max-Fusion U-Net that achieves improved pathology segmentation performance.
We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset.
arXiv Detail & Related papers (2020-09-05T17:24:23Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.