ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism
- URL: http://arxiv.org/abs/2411.04656v1
- Date: Thu, 07 Nov 2024 12:34:25 GMT
- Title: ICH-SCNet: Intracerebral Hemorrhage Segmentation and Prognosis Classification Network Using CLIP-guided SAM mechanism
- Authors: Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Hui Jin, Xinchen Jiang, Gangyong Jia, Qing Wu, Qinglei Shi, Changmiao Wang,
- Abstract summary: Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke and is characterized by a high incidence of disability.
Existing approaches address these two tasks independently and predominantly focus on imaging data alone.
This paper introduces a multi-task network, ICH-SCNet, designed for both ICH segmentation and prognosis classification.
- Score: 12.469269425813607
- License:
- Abstract: Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke and is characterized by a high incidence of disability. Accurate segmentation of the ICH region and prognosis prediction are critically important for developing and refining treatment plans for post-ICH patients. However, existing approaches address these two tasks independently and predominantly focus on imaging data alone, thereby neglecting the intrinsic correlation between the tasks and modalities. This paper introduces a multi-task network, ICH-SCNet, designed for both ICH segmentation and prognosis classification. Specifically, we integrate a SAM-CLIP cross-modal interaction mechanism that combines medical text and segmentation auxiliary information with neuroimaging data to enhance cross-modal feature recognition. Additionally, we develop an effective feature fusion module and a multi-task loss function to improve performance further. Extensive experiments on an ICH dataset reveal that our approach surpasses other state-of-the-art methods. It excels in the overall performance of classification tasks and outperforms competing models in all segmentation task metrics.
Related papers
- Effective Segmentation of Post-Treatment Gliomas Using Simple Approaches: Artificial Sequence Generation and Ensemble Models [7.352034931666381]
We propose two approaches to enhance the segmentation performances of deep learning-based methodologies.
First, we incorporate an additional input based on a simple linear combination of the available MRI sequences input.
Second, we employ various ensembling methods to weigh the contribution of a battery of models.
arXiv Detail & Related papers (2024-09-12T15:34:31Z) - Robust Semi-supervised Multimodal Medical Image Segmentation via Cross Modality Collaboration [21.97457095780378]
We propose a novel semi-supervised multimodal segmentation framework that is robust to scarce labeled data and misaligned modalities.
Our framework employs a novel cross modality collaboration strategy to distill modality-independent knowledge, which is inherently associated with each modality.
It also integrates contrastive consistent learning to regulate anatomical structures, facilitating anatomical-wise prediction alignment on unlabeled data.
arXiv Detail & Related papers (2024-08-14T07:34:12Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Masked Contrastive Reconstruction for Cross-modal Medical Image-Report
Retrieval [3.5314225883644945]
Cross-modal medical image-report retrieval task plays a significant role in clinical diagnosis and various medical generative tasks.
We propose an efficient framework named Masked Contrastive and Reconstruction (MCR), which takes masked data as the sole input for both tasks.
This enhances task connections, reducing information interference and competition between them, while also substantially decreasing the required GPU memory and training time.
arXiv Detail & Related papers (2023-12-26T01:14:10Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning [4.776465250559035]
We propose a Multi-resolution Contextual Network (MRC-Net) to learn contextual dependencies between semantically different features.
We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE.
arXiv Detail & Related papers (2023-04-25T14:27:34Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
In this paper, we aim to exploit the prior knowledge learned from one modality to improve the segmentation performance on another modality.
We propose a novel Mutual Knowledge Distillation scheme to thoroughly exploit the modality-shared knowledge.
Experimental results on the public multi-class cardiac segmentation data, i.e., MMWHS 2017, show that our method achieves large improvements on CT segmentation.
arXiv Detail & Related papers (2020-10-04T10:25:13Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.