論文の概要: Segment anything, from space?
- arxiv url: http://arxiv.org/abs/2304.13000v4
- Date: Thu, 9 Nov 2023 05:22:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 18:39:40.581364
- Title: Segment anything, from space?
- Title(参考訳): 宇宙から何か分離する?
- Authors: Simiao Ren, Francesco Luzi, Saad Lahrichi, Kaleb Kassaw, Leslie M.
Collins, Kyle Bradbury, Jordan M. Malof
- Abstract要約: SAM(Segment Anything Model)は、安価な入力プロンプトに基づいて、入力画像中のオブジェクトをセグメント化することができる。
SAMは通常、目標タスクで訓練された視覚モデルに似た、あるいは時として超えた認識精度を達成した。
SAMの性能が画像のオーバーヘッド問題にまで及んでいるかどうかを考察し、その開発に対するコミュニティの反応を導くのに役立てる。
- 参考スコア(独自算出の注目度): 8.126645790463266
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, the first foundation model developed specifically for image
segmentation tasks was developed, termed the "Segment Anything Model" (SAM).
SAM can segment objects in input imagery based on cheap input prompts, such as
one (or more) points, a bounding box, or a mask. The authors examined the
\textit{zero-shot} image segmentation accuracy of SAM on a large number of
vision benchmark tasks and found that SAM usually achieved recognition accuracy
similar to, or sometimes exceeding, vision models that had been trained on the
target tasks. The impressive generalization of SAM for segmentation has major
implications for vision researchers working on natural imagery. In this work,
we examine whether SAM's performance extends to overhead imagery problems and
help guide the community's response to its development. We examine SAM's
performance on a set of diverse and widely studied benchmark tasks. We find
that SAM does often generalize well to overhead imagery, although it fails in
some cases due to the unique characteristics of overhead imagery and its common
target objects. We report on these unique systematic failure cases for remote
sensing imagery that may comprise useful future research for the community.
- Abstract(参考訳): 近年,イメージセグメンテーションタスク用に開発された最初の基礎モデルが開発され,SAM (Segment Anything Model) と呼ばれる。
SAMは、1つ(またはそれ以上)のポイント、バウンディングボックス、マスクなどの安価な入力プロンプトに基づいて、入力画像にオブジェクトを分割することができる。
著者らは、SAMの画像分割精度を多数の視覚ベンチマークタスクで検証し、SAMは通常、目標タスクで訓練された視覚モデルと似ているか、あるいはそれ以上の認識精度を達成していることを示した。
セグメンテーションのためのSAMの印象的な一般化は、自然画像の研究に重要な意味を持つ。
本研究では,SAMの性能が画像上の問題にまで及んでいるかどうかを考察し,その開発に対するコミュニティの反応を導くのに役立てる。
SAMの性能を多様で広く研究されているベンチマークタスクのセットで検証する。
SAMはオーバヘッド画像によく当てはまるが、オーバヘッド画像の独特の特徴と、その共通のターゲットオブジェクトのため、いくつかのケースでは失敗する。
リモートセンシング画像に対するこれらのユニークな系統的障害事例について報告する。
関連論文リスト
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
我々は,Segment Anything Model 2 (SAM2) がU字型セグメンテーションモデルの強力なエンコーダであることを証明した。
本稿では, SAM2-UNet と呼ばれる, 汎用画像分割のための簡易かつ効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-16T17:55:38Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) は、強力なセグメンテーションと一般化機能を提供する視覚的基本モデルとして提案されている。
実物検出のためのMDSAM(Multi-scale and Detail-enhanced SAM)を提案する。
実験により,複数のSODデータセット上でのモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-08-08T09:09:37Z) - Segment Anything for Videos: A Systematic Survey [52.28931543292431]
最近のファンデーションモデルの波は、コンピュータビジョン(CV)などにおいて大きな成功を収めている。
セグメンテーション・アズ・モデル(SAM)はタスクに依存しない視覚基盤モデルを探究する情熱を喚起した。
本研究は,基礎モデル時代のビデオに対するSAMの体系的レビューを行う。
論文 参考訳(メタデータ) (2024-07-31T02:24:53Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - Performance Evaluation of Segment Anything Model with Variational Prompting for Application to Non-Visible Spectrum Imagery [15.748043194987075]
この研究は、X線/赤外線モダリティに関心のあるオブジェクトのセグメンテーションにおけるセグメンション・任意のモデル機能を評価する。
提案手法は,ボックスプロンプトが与えられた場合,SAMはオブジェクトをX線モードで分割できるが,その性能は点プロンプトによって異なる。
このモダリティの低コントラストの性質を考えると、赤外線オブジェクトもポイントプロンプトでセグメント化することが困難である。
論文 参考訳(メタデータ) (2024-04-18T16:04:14Z) - RSAM-Seg: A SAM-based Approach with Prior Knowledge Integration for
Remote Sensing Image Semantic Segmentation [10.37240769959699]
Segment Anything Model (SAM)は、イメージセグメンテーションタスクのための普遍的な事前トレーニングモデルを提供する。
本稿では,セマンティックを用いたリモートセンシングSAM(RSAM-Seg)を提案する。
SAMのエンコーダ部分のマルチヘッドアテンションブロックにおいて,アダプタスケール(Adapter-Scale)が提案されている。
クラウド検出、フィールド監視、ビル検出、道路マッピングタスクを含む4つの異なるリモートセンシングシナリオで実験が行われた。
論文 参考訳(メタデータ) (2024-02-29T09:55:46Z) - When SAM Meets Sonar Images [6.902760999492406]
Segment Anything Model (SAM)はセグメンテーションのやり方に革命をもたらした。
SAMのパフォーマンスは、自然画像とは異なる領域を含むタスクに適用されると低下する可能性がある。
SAMは微調整技術を用いて、医学や惑星科学のような特定の領域で有望な能力を示す。
論文 参考訳(メタデータ) (2023-06-25T03:15:14Z) - On the Robustness of Segment Anything [46.669794757467166]
我々は, SAMの試験時間ロバスト性について, 敵のシナリオと共通の腐敗下で検討することを目的としている。
SAMは、ぼやけた汚職を除いて、様々な汚職に対して顕著な堅牢性を示す。
論文 参考訳(メタデータ) (2023-05-25T16:28:30Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像データに高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
論文 参考訳(メタデータ) (2023-04-22T07:11:53Z) - SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in
Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and
More [13.047310918166762]
ドメイン固有の情報や視覚的プロンプトを,単純で効果的なアダプタを用いてセグメント化ネットワークに組み込んだtextbfSAM-Adapterを提案する。
タスク固有のネットワークモデルよりも優れていて、テストしたタスクで最先端のパフォーマンスを実現できます。
論文 参考訳(メタデータ) (2023-04-18T17:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。