論文の概要: When SAM Meets Sonar Images
- arxiv url: http://arxiv.org/abs/2306.14109v1
- Date: Sun, 25 Jun 2023 03:15:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 16:52:36.426044
- Title: When SAM Meets Sonar Images
- Title(参考訳): SAMがSonarイメージに出会ったとき
- Authors: Lin Wang, Xiufen Ye, Liqiang Zhu, Weijie Wu, Jianguo Zhang, Huiming
Xing, Chao Hu
- Abstract要約: Segment Anything Model (SAM)はセグメンテーションのやり方に革命をもたらした。
SAMのパフォーマンスは、自然画像とは異なる領域を含むタスクに適用されると低下する可能性がある。
SAMは微調整技術を用いて、医学や惑星科学のような特定の領域で有望な能力を示す。
- 参考スコア(独自算出の注目度): 6.902760999492406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segment Anything Model (SAM) has revolutionized the way of segmentation.
However, SAM's performance may decline when applied to tasks involving domains
that differ from natural images. Nonetheless, by employing fine-tuning
techniques, SAM exhibits promising capabilities in specific domains, such as
medicine and planetary science. Notably, there is a lack of research on the
application of SAM to sonar imaging. In this paper, we aim to address this gap
by conducting a comprehensive investigation of SAM's performance on sonar
images. Specifically, we evaluate SAM using various settings on sonar images.
Additionally, we fine-tune SAM using effective methods both with prompts and
for semantic segmentation, thereby expanding its applicability to tasks
requiring automated segmentation. Experimental results demonstrate a
significant improvement in the performance of the fine-tuned SAM.
- Abstract(参考訳): Segment Anything Model (SAM)はセグメンテーションのやり方に革命をもたらした。
しかし、自然画像とは異なる領域を含むタスクに適用した場合、SAMのパフォーマンスは低下する可能性がある。
それにもかかわらず、SAMは微調整技術を用いて、医学や惑星科学のような特定の領域で有望な能力を示す。
特に、SAMのソナーイメージングへの応用についての研究は乏しい。
本稿では,SAMのソナー画像における性能を包括的に調査することにより,このギャップに対処することを目的とする。
具体的には,ソナー画像の様々な設定を用いてSAMを評価する。
さらに、プロンプトとセマンティックセグメンテーションの両方で効果的な手法を用いてSAMを微調整し、自動セグメンテーションを必要とするタスクに適用性を広げる。
実験の結果,微調整SAMの性能は著しく向上した。
関連論文リスト
- On Efficient Variants of Segment Anything Model: A Survey [63.127753705046]
Segment Anything Model (SAM) は画像分割タスクの基本モデルであり、多様なアプリケーションにまたがる強力な一般化で知られている。
これを解決するために、精度を保ちながら効率を高めるために様々なSAM変種が提案されている。
この調査は、これらの効率的なSAM変種に関する最初の包括的なレビューを提供する。
論文 参考訳(メタデータ) (2024-10-07T11:59:54Z) - SAM-SP: Self-Prompting Makes SAM Great Again [11.109389094334894]
Segment Anything Model (SAM)は、ゼロショットセグメンテーションタスクにおいて印象的な機能を示した。
SAMは、医療画像などの特定の領域に適用した場合、顕著な劣化性能に遭遇する。
本稿では,バニラSAMモデルの拡張に適したSAM-SPという,自己プロンプトに基づくファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-08-22T13:03:05Z) - SAM-CP: Marrying SAM with Composable Prompts for Versatile Segmentation [88.80792308991867]
Segment Anything Model (SAM)は、イメージピクセルをパッチにグループ化する機能を示しているが、セグメンテーションにそれを適用することは依然として大きな課題に直面している。
本稿では,SAM-CPを提案する。SAM-CPはSAM以外の2種類の構成可能なプロンプトを確立し,多目的セグメンテーションのために構成する単純な手法である。
実験により、SAM-CPはオープンドメインとクローズドドメインの両方においてセマンティック、例、およびパノプティックセグメンテーションを達成することが示された。
論文 参考訳(メタデータ) (2024-07-23T17:47:25Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.24734826209367]
Segment Anything Model (SAM)は、新しいパラダイムビジョン基盤モデルとして登場した。
SAMは様々な領域で応用や適応を発見できるが、その主な制限はオブジェクトの意味を把握できないことである。
我々は,SAMとオープン語彙オブジェクト検出器をエンドツーエンドフレームワークでシームレスに統合するSamborを提案する。
論文 参考訳(メタデータ) (2023-12-06T17:19:00Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
この作業では、Segment Anything Modelを同じ入力イメージで動作するエンコーダに置き換える。
複数の医用画像とビデオのベンチマークで最先端の結果を得る。
内部の知識を検査し、軽量なセグメンテーションソリューションを提供するために、浅いデコンボリューションネットワークによってマスクに復号化することを学ぶ。
論文 参考訳(メタデータ) (2023-06-10T07:27:00Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Segment anything, from space? [8.126645790463266]
SAM(Segment Anything Model)は、安価な入力プロンプトに基づいて、入力画像中のオブジェクトをセグメント化することができる。
SAMは通常、目標タスクで訓練された視覚モデルに似た、あるいは時として超えた認識精度を達成した。
SAMの性能が画像のオーバーヘッド問題にまで及んでいるかどうかを考察し、その開発に対するコミュニティの反応を導くのに役立てる。
論文 参考訳(メタデータ) (2023-04-25T17:14:36Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z) - SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in
Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and
More [13.047310918166762]
ドメイン固有の情報や視覚的プロンプトを,単純で効果的なアダプタを用いてセグメント化ネットワークに組み込んだtextbfSAM-Adapterを提案する。
タスク固有のネットワークモデルよりも優れていて、テストしたタスクで最先端のパフォーマンスを実現できます。
論文 参考訳(メタデータ) (2023-04-18T17:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。