論文の概要: Sample-Specific Debiasing for Better Image-Text Models
- arxiv url: http://arxiv.org/abs/2304.13181v1
- Date: Tue, 25 Apr 2023 22:23:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 16:16:18.954574
- Title: Sample-Specific Debiasing for Better Image-Text Models
- Title(参考訳): 画像テキストモデルのためのサンプル特異的デバイアス
- Authors: Peiqi Wang, Yingcheng Liu, Ching-Yun Ko, William M. Wells, Seth
Berkowitz, Steven Horng, Polina Golland
- Abstract要約: 画像テキストデータに基づく自己教師付き表現学習は、画像分類、視覚的接地、相互モーダル検索などの重要な医学的応用を促進する。
1つの一般的なアプローチは、意味論的に類似した(肯定的な)および異種(否定的な)データポイントの対を対比することである。
トレーニングデータセットから一様に負のサンプルを描画すると、偽の負、すなわち、異種として扱われるが同一のクラスに属するサンプルが導入される。
医療データでは、基礎となるクラス分布は不均一であり、偽陰性は高い変動率で起こることを意味する。
- 参考スコア(独自算出の注目度): 7.869467264218254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised representation learning on image-text data facilitates
crucial medical applications, such as image classification, visual grounding,
and cross-modal retrieval. One common approach involves contrasting
semantically similar (positive) and dissimilar (negative) pairs of data points.
Drawing negative samples uniformly from the training data set introduces false
negatives, i.e., samples that are treated as dissimilar but belong to the same
class. In healthcare data, the underlying class distribution is nonuniform,
implying that false negatives occur at a highly variable rate. To improve the
quality of learned representations, we develop a novel approach that corrects
for false negatives. Our method can be viewed as a variant of debiased
constrastive learning that uses estimated sample-specific class probabilities.
We provide theoretical analysis of the objective function and demonstrate the
proposed approach on both image and paired image-text data sets. Our
experiments demonstrate empirical advantages of sample-specific debiasing.
- Abstract(参考訳): 画像テキストデータに基づく自己教師付き表現学習は、画像分類、視覚的接地、相互モーダル検索などの重要な医療応用を促進する。
1つの一般的なアプローチは、意味論的に類似した(正)と異種(負)のデータポイントの対を対比することである。
トレーニングデータセットから一様に負のサンプルを描画すると、偽の陰性、すなわち同じクラスに属する異種として扱われるサンプルが生じる。
医療データでは、基礎となるクラス分布は不均一であり、偽陰性は高い変動率で起こることを意味する。
学習表現の品質を向上させるために,偽陰性を補正する新しい手法を開発した。
提案手法は, 標本特異的なクラス確率を推定し, 偏差学習の変種と見なすことができる。
目的関数の理論的解析を行い、画像とペア画像テキストのデータセットに対して提案したアプローチを示す。
実験はサンプル特異的デバイアスの実証的利点を示す。
関連論文リスト
- Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Contrastive Learning with Negative Sampling Correction [52.990001829393506]
PUCL(Positive-Unlabeled Contrastive Learning)という新しいコントラスト学習手法を提案する。
PUCLは生成した負のサンプルをラベルのないサンプルとして扱い、正のサンプルからの情報を用いて、対照的な損失のバイアスを補正する。
PUCLは一般的なコントラスト学習問題に適用でき、様々な画像やグラフの分類タスクにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-01-13T11:18:18Z) - Synthetic Hard Negative Samples for Contrastive Learning [8.776888865665024]
本稿では,コントラスト学習のための新しい特徴レベル手法,すなわち合成硬質負のサンプルをサンプリングする手法を提案する。
負試料を混合し, アンカー試料と他の負試料とのコントラストを制御して, より硬い負試料を生成する。
提案手法は,画像データセットの分類性能を向上し,既存の手法に容易に組み込むことができる。
論文 参考訳(メタデータ) (2023-04-06T09:54:35Z) - Bootstrapping Semi-supervised Medical Image Segmentation with
Anatomical-aware Contrastive Distillation [10.877450596327407]
半教師型医用画像セグメンテーションのための解剖学的認識型ConTrastive dIstillatiONフレームワークであるACTIONを提案する。
まず, 正対と負対の2値監督ではなく, 負対をソフトにラベル付けして, 反復的コントラスト蒸留法を開発した。
また、サンプルデータの多様性を強制するために、ランダムに選択された負の集合から、より意味論的に類似した特徴を抽出する。
論文 参考訳(メタデータ) (2022-06-06T01:30:03Z) - Exploring Negatives in Contrastive Learning for Unpaired Image-to-Image
Translation [12.754320302262533]
我々は、パッチをスペーシングし、ランキング付けすることで、アンペア画像から画像への変換(PUT)のための新しい負のプルーニング技術を導入する。
提案アルゴリズムは効率的で柔軟で,対応するパッチ間で本質的な情報を安定的に学習することができる。
論文 参考訳(メタデータ) (2022-04-23T08:31:18Z) - Modulated Contrast for Versatile Image Synthesis [60.304183493234376]
MoNCEは画像のコントラストを導入し、多面的画像間距離の知覚のための校正基準を学習する。
複数の対照的な目的に対して協調的に負のサンプルのプッシュ力を変調するために,MoNCEの最適輸送を導入する。
論文 参考訳(メタデータ) (2022-03-17T14:03:46Z) - Negative Evidence Matters in Interpretable Histology Image
Classification [22.709305584896295]
弱い教師付き学習法により、CNN分類器はイメージを共同分類し、予測されたクラスに関連する関心領域を得ることができる。
この問題は、自然画像よりも組織学的画像の方が難しいことが知られている。
完全負のサンプルからの情報を利用する合成損失関数に基づく簡易かつ効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-01-07T13:26:18Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
半定量的理論フレームワークを用いて, InfoNCE に最適化された負のサンプル数について検討した。
トレーニングの有効性関数を最大化する$K$値を用いて,最適負サンプリング比を推定する。
論文 参考訳(メタデータ) (2021-05-27T08:38:29Z) - An Unsupervised Sampling Approach for Image-Sentence Matching Using
Document-Level Structural Information [64.66785523187845]
教師なし画像文マッチングの問題に焦点をあてる。
既存の研究では、文書レベルの構造情報を用いて、モデルトレーニングの正および負のインスタンスをサンプリングする方法が検討されている。
そこで本研究では,追加の文書内画像-文対を正あるいは負のサンプルとして選択する新しいサンプリング手法を提案する。
論文 参考訳(メタデータ) (2021-03-21T05:43:29Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
本稿では、サンプルビューとクラスビューの両方でコントラスト損失を構築する新しい二重コントラストディープクラスタリング(DCDC)フレームワークを紹介します。
具体的には、サンプルビューに対して、元のサンプルとその拡張バージョンのクラス分布を正のサンプルペアとして設定する。
クラスビューでは、クラスのサンプル分布から正のペアと負のペアを構築します。
このように、2つのコントラスト損失は、サンプルとクラスレベルでのミニバッチサンプルのクラスタリング結果をうまく制限します。
論文 参考訳(メタデータ) (2021-03-09T15:15:32Z) - Conditional Negative Sampling for Contrastive Learning of Visual
Representations [19.136685699971864]
難解な負の選択、あるいは現在の例に類似した選択は、より強い表現をもたらす可能性があることを示す。
それぞれの正の周りの「リング」に、負を条件付きでサンプリングする相互情報推定器のファミリーを導入する。
これらの推定器は, 偏差が大きいが, NCEよりも分散度が低いことが証明された。
論文 参考訳(メタデータ) (2020-10-05T14:17:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。