論文の概要: Bayesian Federated Learning: A Survey
- arxiv url: http://arxiv.org/abs/2304.13267v1
- Date: Wed, 26 Apr 2023 03:41:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 15:37:57.074232
- Title: Bayesian Federated Learning: A Survey
- Title(参考訳): ベイズ連合学習:調査
- Authors: Longbing Cao, Hui Chen, Xuhui Fan, Joao Gama, Yew-Soon Ong, Vipin
Kumar
- Abstract要約: フェデレートラーニング(FL)は、分散インフラストラクチャ、コミュニケーション、コンピューティング、学習をプライバシ保護の方法で統合する際の利点を示している。
既存のFL手法のロバスト性と能力は、制限された動的データと条件によって挑戦される。
BFLはこれらの問題に対処するための有望なアプローチとして登場した。
- 参考スコア(独自算出の注目度): 54.40136267717288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) demonstrates its advantages in integrating
distributed infrastructure, communication, computing and learning in a
privacy-preserving manner. However, the robustness and capabilities of existing
FL methods are challenged by limited and dynamic data and conditions,
complexities including heterogeneities and uncertainties, and analytical
explainability. Bayesian federated learning (BFL) has emerged as a promising
approach to address these issues. This survey presents a critical overview of
BFL, including its basic concepts, its relations to Bayesian learning in the
context of FL, and a taxonomy of BFL from both Bayesian and federated
perspectives. We categorize and discuss client- and server-side and FL-based
BFL methods and their pros and cons. The limitations of the existing BFL
methods and the future directions of BFL research further address the intricate
requirements of real-life FL applications.
- Abstract(参考訳): federated learning(fl)は、分散インフラストラクチャ、コミュニケーション、コンピューティング、学習をプライバシ保護の方法で統合する、そのメリットを示している。
しかしながら、既存のfl法のロバスト性と能力は、限定的かつダイナミックなデータと条件、異質性と不確実性を含む複雑さ、分析的な説明可能性によって挑戦される。
ベイズ連合学習(BFL)はこれらの問題に対処するための有望なアプローチとして登場した。
本研究は,bflの基本概念,flの文脈におけるベイズ学習との関係,ベイズと連邦の両方の観点からのbflの分類など,bflの批判的な概観を示す。
クライアント側およびサーバ側およびFLベースのBFL手法とその長所と短所を分類し議論する。
既存のBFL手法の限界とBFL研究の今後の方向性は、現実のBFL応用の複雑な要件をさらに解決している。
関連論文リスト
- FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion [48.90879664138855]
ワンショットフェデレートラーニング(OFL)は、訓練されたモデルを1回だけ集約することで、FLにおける通信コストを大幅に削減する。
しかし、高度なOFL法の性能は通常のFLよりもはるかに遅れている。
本稿では,FuseFL と呼ばれる,高い性能と低通信・ストレージコストを有する新しい学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-27T09:07:10Z) - Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning(VFL)は、プライバシ保護のための分散学習パラダイムである。
近年の研究では、VFLの様々な課題に対処する有望な成果が示されている。
この調査は、最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2024-05-25T16:05:06Z) - Towards Open Federated Learning Platforms: Survey and Vision from
Technical and Legal Perspectives [34.0620974123791]
従来のフェデレートラーニング(FL)は、サーバが支配する協調パラダイムに従っています。
私たちは、現在のFLフレームワークの設計を再考し、より一般的な概念であるOpen Federated Learning Platformに拡張することを提唱します。
論文 参考訳(メタデータ) (2023-07-05T09:30:14Z) - Decentralized Federated Learning: A Survey and Perspective [45.81975053649379]
分散FL(DFL)は、中央サーバーを必要としない分散ネットワークアーキテクチャである。
DFLはクライアント間の直接通信を可能にし、通信リソースの大幅な節約をもたらす。
論文 参考訳(メタデータ) (2023-06-02T15:12:58Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - FAIR-BFL: Flexible and Incentive Redesign for Blockchain-based Federated
Learning [19.463891024499773]
Vanilla Federated Learning (FL)は、集中型のグローバルアグリゲーションメカニズムに依存し、すべてのクライアントが誠実であると仮定する。
これにより、FLが単一障害点と不適切なクライアントを緩和することが難しくなります。
我々は、新しいBFLフレームワークを設計し、評価し、FAIR-BFLと呼ばれる柔軟性とインセンティブを持つバニラBFLの課題を解決した。
論文 参考訳(メタデータ) (2022-06-26T15:20:45Z) - pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning [42.819532536636835]
そこで我々は,pFL ベンチマーク pFL-Bench を提案し,迅速な再現性,標準化,徹底的な pFL 評価を行った。
提案するベンチマークには、統一されたデータパーティションと現実的な異種設定を備えた、多様なアプリケーションドメインの10以上のデータセットが含まれている。
我々は、最先端のpFL手法の利点と可能性を強調し、pFL-BenchがさらなるpFL研究と幅広い応用を可能にすることを期待する。
論文 参考訳(メタデータ) (2022-06-08T02:51:59Z) - FederatedScope: A Comprehensive and Flexible Federated Learning Platform
via Message Passing [63.87056362712879]
我々は,メッセージ指向フレームワークを基盤とした,新しい総合的なフェデレート学習プラットフォームであるFederatedScopeを提案する。
手続き型フレームワークと比較して、提案されたメッセージ指向フレームワークは異種メッセージ交換を表現するのに柔軟である。
我々は、FederatedScopeの正確性と効率性を検証するために、提供された簡易かつ包括的なFLベンチマークについて一連の実験を行った。
論文 参考訳(メタデータ) (2022-04-11T11:24:21Z) - Towards Personalized Federated Learning [20.586573091790665]
PFL手法をデータベースおよびモデルベースアプローチに分割するユニークな分類法を提案する。
我々は、その重要なアイデアを強調し、新しいpflアーキテクチャ設計に向けた研究の将来の展望を期待する。
論文 参考訳(メタデータ) (2021-03-01T02:45:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。