論文の概要: Deep Equilibrium Models Meet Federated Learning
- arxiv url: http://arxiv.org/abs/2305.18646v1
- Date: Mon, 29 May 2023 22:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 19:08:50.351624
- Title: Deep Equilibrium Models Meet Federated Learning
- Title(参考訳): 連合学習に適合する深層平衡モデル
- Authors: Alexandros Gkillas, Dimitris Ampeliotis, Kostas Berberidis
- Abstract要約: 本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
- 参考スコア(独自算出の注目度): 71.57324258813675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study the problem of Federated Learning (FL) is explored under a new
perspective by utilizing the Deep Equilibrium (DEQ) models instead of
conventional deep learning networks. We claim that incorporating DEQ models
into the federated learning framework naturally addresses several open problems
in FL, such as the communication overhead due to the sharing large models and
the ability to incorporate heterogeneous edge devices with significantly
different computation capabilities. Additionally, a weighted average fusion
rule is proposed at the server-side of the FL framework to account for the
different qualities of models from heterogeneous edge devices. To the best of
our knowledge, this study is the first to establish a connection between DEQ
models and federated learning, contributing to the development of an efficient
and effective FL framework. Finally, promising initial experimental results are
presented, demonstrating the potential of this approach in addressing
challenges of FL.
- Abstract(参考訳): 本研究では,従来の深層学習ネットワークではなく,Deep Equilibrium(DEQ)モデルを用いて,新しい視点でFederated Learning(FL)の課題を考察する。
フェデレーション学習フレームワークにdeqモデルを組み込むことは、大きなモデルを共有することによる通信オーバーヘッドや、計算能力が著しく異なる異種エッジデバイスを統合する能力など、flのいくつかのオープンな問題に自然に対処できると主張している。
さらに、ヘテロジニアスエッジデバイスからのモデルの異なる品質を考慮するために、flフレームワークのサーバ側で重み付け平均融合ルールが提案されている。
我々の知る限りでは、この研究はdeqモデルと連合学習の関連を確立する最初の方法であり、効率的かつ効果的なflフレームワークの開発に寄与している。
最後に、有望な最初の実験結果が示され、flの課題に取り組む際のこのアプローチの可能性を示す。
関連論文リスト
- FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
フェデレートラーニング(FL)は、分散データソースを持つ複数のクライアントが、データのプライバシを損なうことなく、共同で共有モデルをトレーニングすることを可能にする。
我々は、モデルの不均一性と非同期学習をサポートする完全分散pFLアルゴリズムであるFederated Peer-Adaptive Ensemble Learning (FedPAE)を紹介する。
提案手法では,ピアツーピアモデル共有機構とアンサンブル選択を用いて,局所情報とグローバル情報とのより洗練されたバランスを実現する。
論文 参考訳(メタデータ) (2024-10-17T22:47:19Z) - Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning [2.8498944632323755]
本研究では,XGBoostモデルに基づく新しい連邦学習(FL)フレームワークを提案する。
FLモデルは、異なるモデルと比較して精度と一般化能力が優れていることを示す。
本研究は, 協調型・プライバシー保護型FL技術により, 従来と異なる貯水池を評価するための新たな道を開くものである。
論文 参考訳(メタデータ) (2024-04-29T09:12:31Z) - Every Parameter Matters: Ensuring the Convergence of Federated Learning
with Dynamic Heterogeneous Models Reduction [22.567754688492414]
クロスデバイス・フェデレーション・ラーニング(FL)は、ユニークなコントリビューションを行う可能性のあるローエンドのクライアントが、リソースのボトルネックのため、大規模なモデルのトレーニングから除外されるという、大きな課題に直面します。
近年,グローバルモデルから縮小サイズのモデルを抽出し,それに応じてローカルクライアントに適用することによって,モデル不均一FLに焦点を当てている。
本稿では,オンラインモデル抽出を用いた不均一FLアルゴリズムの一元化フレームワークを提案し,一般収束解析を初めて提供する。
論文 参考訳(メタデータ) (2023-10-12T19:07:58Z) - UNIDEAL: Curriculum Knowledge Distillation Federated Learning [17.817181326740698]
フェデレートラーニング(FL)は、複数のクライアント間で協調学習を可能にする、有望なアプローチとして登場した。
本稿では,ドメイン横断シナリオの課題に対処するための新しいFLアルゴリズムであるUNIを提案する。
この結果から,UNIはモデル精度と通信効率の両面において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-09-16T11:30:29Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z) - Federated Ensemble Model-based Reinforcement Learning in Edge Computing [21.840086997141498]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための分散機械学習パラダイムである。
モデルベースRLとアンサンブル知識蒸留をFLに効果的に組み込む新しいFRLアルゴリズムを提案する。
具体的には、FLと知識蒸留を利用して、クライアント向けの動的モデルのアンサンブルを作成し、環境と相互作用することなく、単にアンサンブルモデルを使用することでポリシーを訓練する。
論文 参考訳(メタデータ) (2021-09-12T16:19:10Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。