論文の概要: Detection of Alzheimer's Disease using MRI scans based on Inertia Tensor
and Machine Learning
- arxiv url: http://arxiv.org/abs/2304.13314v1
- Date: Wed, 26 Apr 2023 06:37:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 15:17:41.597257
- Title: Detection of Alzheimer's Disease using MRI scans based on Inertia Tensor
and Machine Learning
- Title(参考訳): 慣性テンソルと機械学習を用いたMRIによるアルツハイマー病の検出
- Authors: Krishna Mahapatra and Selvakumar R
- Abstract要約: アルツハイマー病(英: Alzheimer's Disease)は、高齢者の神経疾患である。
我々は,慣性テンソル解析と機械学習に基づいて,MRI画像からアルツハイマー病の4つの異なる段階を検出する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's Disease is a devastating neurological disorder that is
increasingly affecting the elderly population. Early and accurate detection of
Alzheimer's is crucial for providing effective treatment and support for
patients and their families. In this study, we present a novel approach for
detecting four different stages of Alzheimer's disease from MRI scan images
based on inertia tensor analysis and machine learning. From each available MRI
scan image for different classes of Dementia, we first compute a very simple 2
x 2 matrix, using the techniques of forming a moment of inertia tensor, which
is largely used in different physical problems. Using the properties of the
obtained inertia tensor and their eigenvalues, along with some other machine
learning techniques, we were able to significantly classify the different types
of Dementia. This process provides a new and unique approach to identifying and
classifying different types of images using machine learning, with a
classification accuracy of (90%) achieved. Our proposed method not only has the
potential to be more cost-effective than current methods but also provides a
new physical insight into the disease by reducing the dimension of the image
matrix. The results of our study highlight the potential of this approach for
advancing the field of Alzheimer's disease detection and improving patient
outcomes.
- Abstract(参考訳): アルツハイマー病(英: Alzheimer's Disease)は、高齢者の神経疾患である。
アルツハイマーの早期かつ正確な検出は、患者とその家族に効果的な治療と支援を提供するために重要である。
本研究では,慣性テンソル解析と機械学習に基づいて,mriスキャン画像からアルツハイマー病の4つの病期を検出する新しい手法を提案する。
認知症分類の異なる分類のmriスキャン画像から、我々はまず非常に単純な2 x 2マトリクスを計算し、様々な物理的問題で主に使用される慣性テンソルのモーメントを形成する手法を用いた。
得られた慣性テンソルとその固有値の特性と、他の機械学習手法を用いて、異なるタイプの認知症を顕著に分類することができた。
このプロセスは、機械学習を使用してさまざまなタイプの画像を識別し、分類するための、新しいユニークなアプローチを提供する。
提案手法は,現在の手法よりも費用対効果が高いだけでなく,画像マトリックスの次元を小さくすることで,疾患に対する新たな物理的洞察を与える。
本研究は,アルツハイマー病の検出の進展と患者の予後改善に向けたアプローチの可能性を明らかにするものである。
関連論文リスト
- Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
本研究では,最新のCNNを特徴とする深層学習技術を活用することで,アルツハイマー病(AD)のMRIデータを分類することに焦点を当てた。
アルツハイマー病は高齢者の認知症の主要な原因であり、徐々に認知機能障害を引き起こす不可逆的な脳疾患である。
将来、この研究は、信号、画像、その他のデータを含む他の種類の医療データを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-05-20T15:44:07Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
RF, SVM, CNNアルゴリズムを用いて認知症の4段階を分類する手法を提案する。
以上の結果から,浸水特性を持つSVMの精度は96.25%であり,他の分類法よりも高いことがわかった。
論文 参考訳(メタデータ) (2023-11-02T17:44:28Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
本稿では,SMRI画像からアルツハイマー病を検出するためのクラス分解を用いた転写学習手法を提案する。
提案モデルは,アルツハイマー病 (AD) と軽度認知障害 (MCI) と認知正常 (CN) の分類課題における最先端の成績を,文献から3%の精度で達成した。
論文 参考訳(メタデータ) (2023-01-31T09:44:52Z) - Classification of Alzheimer's Disease Using the Convolutional Neural
Network (CNN) with Transfer Learning and Weighted Loss [2.191505742658975]
本研究では,Residual Network 18 Layer(ResNet-18)アーキテクチャを用いた畳み込みニューラルネットワーク(CNN)手法を提案する。
モデルの精度は、転送学習、重み付き損失、およびミッシュアクティベーション関数を用いて88.3%である。
論文 参考訳(メタデータ) (2022-07-04T17:09:27Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
アルツハイマー病(Alzheimer's disease、AD)は、脳細胞を破壊し、患者の記憶に損失を引き起こす進行性および不治性の神経変性疾患である。
本稿では,不均衡な3次元MRIデータセットを用いた2次元深部畳み込みニューラルネットワーク(2D-DCNN)によるADの診断手法を提案する。
このモデルはMRIをAD、軽度認知障害、正常制御の3つのカテゴリに分類し、99.89%の分類精度を不均衡クラスで達成した。
論文 参考訳(メタデータ) (2021-01-08T06:51:08Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。