論文の概要: Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods
- arxiv url: http://arxiv.org/abs/2311.01428v1
- Date: Thu, 2 Nov 2023 17:44:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 12:21:47.260950
- Title: Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods
- Title(参考訳): 機械学習を用いたアルツハイマー病認知度の同定
- Authors: Md Gulzar Hussain, Ye Shiren
- Abstract要約: RF, SVM, CNNアルゴリズムを用いて認知症の4段階を分類する手法を提案する。
以上の結果から,浸水特性を持つSVMの精度は96.25%であり,他の分類法よりも高いことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dementia, a prevalent neurodegenerative condition, is a major manifestation
of Alzheimer's disease (AD). As the condition progresses from mild to severe,
it significantly impairs the individual's ability to perform daily tasks
independently, necessitating the need for timely and accurate AD
classification. Machine learning or deep learning models have emerged as
effective tools for this purpose. In this study, we suggested an approach for
classifying the four stages of dementia using RF, SVM, and CNN algorithms,
augmented with watershed segmentation for feature extraction from MRI images.
Our results reveal that SVM with watershed features achieves an impressive
accuracy of 96.25%, surpassing other classification methods. The ADNI dataset
is utilized to evaluate the effectiveness of our method, and we observed that
the inclusion of watershed segmentation contributes to the enhanced performance
of the models.
- Abstract(参考訳): 認知症(Dementia)は、アルツハイマー病(AD)の主要な症状である。
症状が軽度から重度に進行するにつれて、個人が単独で日常業務を行う能力が著しく低下し、時間的かつ正確なAD分類の必要性が増す。
機械学習やディープラーニングモデルがこの目的のために効果的なツールとして登場した。
本研究では, RF, SVM, CNNアルゴリズムを用いて認知症の4段階を分類する手法を提案する。
以上の結果から,浸水特性を持つSVMの精度は96.25%であり,他の分類法よりも高いことがわかった。
本手法の有効性を評価するためにadniデータセットを用いて,流域セグメンテーションの導入がモデルの性能向上に寄与することを確認した。
関連論文リスト
- Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
アルツハイマー病 (AD) と前頭側頭型認知症 (FTD) は認知症の一般的な形態であり、それぞれ異なる進行パターンを持つ。
本研究は,脳深部領域の時系列信号を解析し,認知症に対する深い学習に基づく分類システムを開発することを目的とする。
論文 参考訳(メタデータ) (2024-08-20T13:11:43Z) - Enhanced Deep Learning Methodologies and MRI Selection Techniques for Dementia Diagnosis in the Elderly Population [5.103059984821972]
3次元脳磁気共鳴画像(MRI)による認知症・非認知症高齢者の分類法を提案する。
提案手法は,MRIスライスを選択的に処理し,最も関連性の高い脳領域に着目し,少ない情報領域を除外するユニークな手法である。
この方法論は、3つのカスタムディープラーニングモデルからなる信頼に基づく分類委員会によって補完される。
論文 参考訳(メタデータ) (2024-07-24T14:48:40Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
本研究では,最新のCNNを特徴とする深層学習技術を活用することで,アルツハイマー病(AD)のMRIデータを分類することに焦点を当てた。
アルツハイマー病は高齢者の認知症の主要な原因であり、徐々に認知機能障害を引き起こす不可逆的な脳疾患である。
将来、この研究は、信号、画像、その他のデータを含む他の種類の医療データを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-05-20T15:44:07Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - Detection of Alzheimer's Disease using MRI scans based on Inertia Tensor
and Machine Learning [0.0]
アルツハイマー病(英: Alzheimer's Disease)は、高齢者の神経疾患である。
我々は,慣性テンソル解析と機械学習に基づいて,MRI画像からアルツハイマー病の4つの異なる段階を検出する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-26T06:37:14Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。