Detection of Alzheimer's Disease using MRI scans based on Inertia Tensor
and Machine Learning
- URL: http://arxiv.org/abs/2304.13314v1
- Date: Wed, 26 Apr 2023 06:37:14 GMT
- Title: Detection of Alzheimer's Disease using MRI scans based on Inertia Tensor
and Machine Learning
- Authors: Krishna Mahapatra and Selvakumar R
- Abstract summary: Alzheimer's Disease is a devastating neurological disorder that is increasingly affecting the elderly population.
We present a novel approach for detecting four different stages of Alzheimer's disease from MRI scan images based on inertia tensor analysis and machine learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's Disease is a devastating neurological disorder that is
increasingly affecting the elderly population. Early and accurate detection of
Alzheimer's is crucial for providing effective treatment and support for
patients and their families. In this study, we present a novel approach for
detecting four different stages of Alzheimer's disease from MRI scan images
based on inertia tensor analysis and machine learning. From each available MRI
scan image for different classes of Dementia, we first compute a very simple 2
x 2 matrix, using the techniques of forming a moment of inertia tensor, which
is largely used in different physical problems. Using the properties of the
obtained inertia tensor and their eigenvalues, along with some other machine
learning techniques, we were able to significantly classify the different types
of Dementia. This process provides a new and unique approach to identifying and
classifying different types of images using machine learning, with a
classification accuracy of (90%) achieved. Our proposed method not only has the
potential to be more cost-effective than current methods but also provides a
new physical insight into the disease by reducing the dimension of the image
matrix. The results of our study highlight the potential of this approach for
advancing the field of Alzheimer's disease detection and improving patient
outcomes.
Related papers
- Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
This study focuses on classifying Magnetic Resonance Imaging (MRI) data for Alzheimer's disease (AD) by leveraging deep learning techniques characterized by state-of-the-art CNNs.
Alzheimer's disease is the leading cause of dementia in the elderly, and it is an irreversible brain illness that causes gradual cognitive function disorder.
In future, this study can be extended to incorporate other types of medical data, including signals, images, and other data.
arXiv Detail & Related papers (2024-05-20T15:44:07Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
We suggest an approach for classifying the four stages of dementia using RF, SVM, and CNN algorithms, augmented with watershed segmentation for feature extraction from MRI images.
Our results reveal that SVM with watershed features achieves an impressive accuracy of 96.25%, surpassing other classification methods.
arXiv Detail & Related papers (2023-11-02T17:44:28Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
This paper proposes a transfer learning method using class decomposition to detect Alzheimer's disease from sMRI images.
The proposed model achieved state-of-the-art performance in the Alzheimer's disease (AD) vs mild cognitive impairment (MCI) vs cognitively normal (CN) classification task with a 3% increase in accuracy from what is reported in the literature.
arXiv Detail & Related papers (2023-01-31T09:44:52Z) - Classification of Alzheimer's Disease Using the Convolutional Neural
Network (CNN) with Transfer Learning and Weighted Loss [2.191505742658975]
This study propose the Convolutional Neural Network (CNN) method with the Residual Network 18 Layer (ResNet-18) architecture.
The accuracy of the model is 88.3 % using transfer learning, weighted loss and the mish activation function.
arXiv Detail & Related papers (2022-07-04T17:09:27Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.