Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models
- URL: http://arxiv.org/abs/2405.12126v1
- Date: Mon, 20 May 2024 15:44:07 GMT
- Title: Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models
- Authors: Nida Nasir, Muneeb Ahmed, Neda Afreen, Mustafa Sameer,
- Abstract summary: This study focuses on classifying Magnetic Resonance Imaging (MRI) data for Alzheimer's disease (AD) by leveraging deep learning techniques characterized by state-of-the-art CNNs.
Alzheimer's disease is the leading cause of dementia in the elderly, and it is an irreversible brain illness that causes gradual cognitive function disorder.
In future, this study can be extended to incorporate other types of medical data, including signals, images, and other data.
- Score: 2.4561590439700076
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning, a cutting-edge machine learning approach, outperforms traditional machine learning in identifying intricate structures in complex high-dimensional data, particularly in the domain of healthcare. This study focuses on classifying Magnetic Resonance Imaging (MRI) data for Alzheimer's disease (AD) by leveraging deep learning techniques characterized by state-of-the-art CNNs. Brain imaging techniques such as MRI have enabled the measurement of pathophysiological brain changes related to Alzheimer's disease. Alzheimer's disease is the leading cause of dementia in the elderly, and it is an irreversible brain illness that causes gradual cognitive function disorder. In this paper, we train some benchmark deep models individually for the approach of the solution and later use an ensembling approach to combine the effect of multiple CNNs towards the observation of higher recall and accuracy. Here, the model's effectiveness is evaluated using various methods, including stacking, majority voting, and the combination of models with high recall values. The majority voting performs better than the alternative modelling approach as the majority voting approach typically reduces the variance in the predictions. We report a test accuracy of 90% with a precision score of 0.90 and a recall score of 0.89 in our proposed approach. In future, this study can be extended to incorporate other types of medical data, including signals, images, and other data. The same or alternative datasets can be used with additional classifiers, neural networks, and AI techniques to enhance Alzheimer's detection.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Hybridized Convolutional Neural Networks and Long Short-Term Memory for
Improved Alzheimer's Disease Diagnosis from MRI Scans [2.621434923709917]
This study aims to present a hybrid model that combines a CNN model's feature extraction capabilities with an LSTM model's detection capabilities.
The training of the hybrid model involved utilizing the ADNI dataset.
The model achieved a level of accuracy of 98.8%, a sensitivity rate of 100%, and a specificity rate of 76%.
arXiv Detail & Related papers (2024-03-08T14:34:32Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Detection of Alzheimer's Disease using MRI scans based on Inertia Tensor
and Machine Learning [0.0]
Alzheimer's Disease is a devastating neurological disorder that is increasingly affecting the elderly population.
We present a novel approach for detecting four different stages of Alzheimer's disease from MRI scan images based on inertia tensor analysis and machine learning.
arXiv Detail & Related papers (2023-04-26T06:37:14Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
This paper proposes a transfer learning method using class decomposition to detect Alzheimer's disease from sMRI images.
The proposed model achieved state-of-the-art performance in the Alzheimer's disease (AD) vs mild cognitive impairment (MCI) vs cognitively normal (CN) classification task with a 3% increase in accuracy from what is reported in the literature.
arXiv Detail & Related papers (2023-01-31T09:44:52Z) - Classification of Alzheimer's Disease Using the Convolutional Neural
Network (CNN) with Transfer Learning and Weighted Loss [2.191505742658975]
This study propose the Convolutional Neural Network (CNN) method with the Residual Network 18 Layer (ResNet-18) architecture.
The accuracy of the model is 88.3 % using transfer learning, weighted loss and the mish activation function.
arXiv Detail & Related papers (2022-07-04T17:09:27Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.