Classification of Alzheimer's Disease Using the Convolutional Neural
Network (CNN) with Transfer Learning and Weighted Loss
- URL: http://arxiv.org/abs/2207.01584v1
- Date: Mon, 4 Jul 2022 17:09:27 GMT
- Title: Classification of Alzheimer's Disease Using the Convolutional Neural
Network (CNN) with Transfer Learning and Weighted Loss
- Authors: Muhammad Wildan Oktavian, Novanto Yudistira, Achmad Ridok
- Abstract summary: This study propose the Convolutional Neural Network (CNN) method with the Residual Network 18 Layer (ResNet-18) architecture.
The accuracy of the model is 88.3 % using transfer learning, weighted loss and the mish activation function.
- Score: 2.191505742658975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's disease is a progressive neurodegenerative disorder that
gradually deprives the patient of cognitive function and can end in death. With
the advancement of technology today, it is possible to detect Alzheimer's
disease through Magnetic Resonance Imaging (MRI) scans. So that MRI is the
technique most often used for the diagnosis and analysis of the progress of
Alzheimer's disease. With this technology, image recognition in the early
diagnosis of Alzheimer's disease can be achieved automatically using machine
learning. Although machine learning has many advantages, currently the use of
deep learning is more widely applied because it has stronger learning
capabilities and is more suitable for solving image recognition problems.
However, there are still several challenges that must be faced to implement
deep learning, such as the need for large datasets, requiring large computing
resources, and requiring careful parameter setting to prevent overfitting or
underfitting. In responding to the challenge of classifying Alzheimer's disease
using deep learning, this study propose the Convolutional Neural Network (CNN)
method with the Residual Network 18 Layer (ResNet-18) architecture. To overcome
the need for a large and balanced dataset, transfer learning from ImageNet is
used and weighting the loss function values so that each class has the same
weight. And also in this study conducted an experiment by changing the network
activation function to a mish activation function to increase accuracy. From
the results of the tests that have been carried out, the accuracy of the model
is 88.3 % using transfer learning, weighted loss and the mish activation
function. This accuracy value increases from the baseline model which only gets
an accuracy of 69.1 %.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Alzheimer's Magnetic Resonance Imaging Classification Using Deep and Meta-Learning Models [2.4561590439700076]
This study focuses on classifying Magnetic Resonance Imaging (MRI) data for Alzheimer's disease (AD) by leveraging deep learning techniques characterized by state-of-the-art CNNs.
Alzheimer's disease is the leading cause of dementia in the elderly, and it is an irreversible brain illness that causes gradual cognitive function disorder.
In future, this study can be extended to incorporate other types of medical data, including signals, images, and other data.
arXiv Detail & Related papers (2024-05-20T15:44:07Z) - Hybridized Convolutional Neural Networks and Long Short-Term Memory for
Improved Alzheimer's Disease Diagnosis from MRI Scans [2.621434923709917]
This study aims to present a hybrid model that combines a CNN model's feature extraction capabilities with an LSTM model's detection capabilities.
The training of the hybrid model involved utilizing the ADNI dataset.
The model achieved a level of accuracy of 98.8%, a sensitivity rate of 100%, and a specificity rate of 76%.
arXiv Detail & Related papers (2024-03-08T14:34:32Z) - Attention-based Efficient Classification for 3D MRI Image of Alzheimer's
Disease [2.6793044027881865]
This study proposes a novel Alzheimer's disease detection model based on Convolutional Neural Networks.
The experimental results indicate that the employed 2D fusion algorithm effectively improves the model's training expense.
arXiv Detail & Related papers (2024-01-25T12:18:46Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense
Active Learning for Super-resolution [47.38982697349244]
Dense regression is a widely used approach in computer vision for tasks such as image super-resolution, enhancement, depth estimation, etc.
We propose incorporating active learning into dense regression models to address this problem.
Active learning allows models to select the most informative samples for labeling, reducing the overall annotation cost while improving performance.
arXiv Detail & Related papers (2023-05-27T16:33:43Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
This paper proposes a transfer learning method using class decomposition to detect Alzheimer's disease from sMRI images.
The proposed model achieved state-of-the-art performance in the Alzheimer's disease (AD) vs mild cognitive impairment (MCI) vs cognitively normal (CN) classification task with a 3% increase in accuracy from what is reported in the literature.
arXiv Detail & Related papers (2023-01-31T09:44:52Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.