論文の概要: The Roles of Symbols in Neural-based AI: They are Not What You Think!
- arxiv url: http://arxiv.org/abs/2304.13626v1
- Date: Wed, 26 Apr 2023 15:33:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 13:42:09.504955
- Title: The Roles of Symbols in Neural-based AI: They are Not What You Think!
- Title(参考訳): ニューラルベースAIにおけるシンボルの役割:それらはあなたが考えるものではありません!
- Authors: Daniel L. Silver and Tom M. Mitchell
- Abstract要約: 知的エージェントのための新しいニューロシンボリック仮説と有望なアーキテクチャを提案する。
私たちの仮説と関連するアーキテクチャは、シンボルが知的システムの将来に重要なままであることを示している。
- 参考スコア(独自算出の注目度): 25.450989579215708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose that symbols are first and foremost external communication tools
used between intelligent agents that allow knowledge to be transferred in a
more efficient and effective manner than having to experience the world
directly. But, they are also used internally within an agent through a form of
self-communication to help formulate, describe and justify subsymbolic patterns
of neural activity that truly implement thinking. Symbols, and our languages
that make use of them, not only allow us to explain our thinking to others and
ourselves, but also provide beneficial constraints (inductive bias) on learning
about the world. In this paper we present relevant insights from neuroscience
and cognitive science, about how the human brain represents symbols and the
concepts they refer to, and how today's artificial neural networks can do the
same. We then present a novel neuro-symbolic hypothesis and a plausible
architecture for intelligent agents that combines subsymbolic representations
for symbols and concepts for learning and reasoning. Our hypothesis and
associated architecture imply that symbols will remain critical to the future
of intelligent systems NOT because they are the fundamental building blocks of
thought, but because they are characterizations of subsymbolic processes that
constitute thought.
- Abstract(参考訳): 我々は,知識を直接体験するよりも,より効率的かつ効果的に伝達できる知的エージェント間で使用される,最も先進的な外部コミュニケーションツールである,と提案する。
しかし、それらはまた、思考を真に実装する神経活動の象徴的なパターンを定式化し、記述し、正当化するために、自己コミュニケーションの形でエージェントの内部で使用される。
シンボルとそれを利用する私たちの言語は、他人や自分自身に私たちの考えを説明するだけでなく、世界について学ぶ上で有益な制約(帰納的バイアス)を提供する。
本稿では,ニューロサイエンスと認知科学,人間の脳がシンボルや概念をどのように表現するか,そして今日のニューラルネットワークがどのように同じことをできるか,といった知見について述べる。
そこで我々は,新しいニューロシンボリック仮説と,シンボルのサブシンボリック表現と,学習と推論のための概念を組み合わせた知的エージェントのための実証可能なアーキテクチャを提案する。
我々の仮説と関連するアーキテクチャは、シンボルは思考の基本的な構成要素であると同時に、思考を構成するサブシンボリックなプロセスの特性であるため、知的システムの将来にとって重要な存在であることを示している。
関連論文リスト
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Neurosymbolic AI - Why, What, and How [9.551858963199987]
人間は知覚と認知の組み合わせを使って環境と相互作用する。
一方、機械認識はより複雑な計算を包含する。
本稿では,ニューロシンボリックAIの新たなパラダイムを紹介する。
論文 参考訳(メタデータ) (2023-05-01T13:27:22Z) - Emergence of Symbols in Neural Networks for Semantic Understanding and
Communication [8.156761369660096]
本稿では,シンボルの作成,意味論の理解,コミュニケーションの実現が可能なニューラルネットワークを実現するためのソリューションを提案する。
SEA-netは特定のタスクを実行するためにネットワークを動的に構成するシンボルを生成する。
これらのシンボルは合成意味情報をキャプチャし、システムは記号操作や通信によって純粋に新しい関数を取得できる。
論文 参考訳(メタデータ) (2023-04-13T10:13:00Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
本稿では、ニューラルネットワークを用いてシンボルとコネクショナリズムの原理を組み合わせることで、離散表現を導出することを提案する。
対話型環境とタスクを設計することにより、機械が自発的で柔軟でセマンティックな言語を生成できることを実証した。
論文 参考訳(メタデータ) (2022-01-14T14:54:58Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
本稿では,画像のオブジェクトへの処理,学習関係,論理規則に関する完全なニューロシンボリックな手法を提案する。
主な貢献は、シンボリックリレーションとルールを抽出できるディープラーニングアーキテクチャにおける差別化可能なレイヤである。
我々のモデルは最先端のシンボリックラーナーを超えてスケールし、ディープリレーショナルニューラルネットワークアーキテクチャよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-06-14T15:19:06Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
AIの信頼、安全性、解釈可能性、説明責任に関する懸念は、影響力のある思想家によって提起された。
多くは、知識表現と推論を深層学習に統合する必要性を認識している。
ニューラル・シンボリック・コンピューティングは、推論と説明可能性を備えた堅牢な学習をニューラルネットワークで組み合わせようとする研究の活発な領域である。
論文 参考訳(メタデータ) (2020-12-10T18:31:38Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。