論文の概要: Multiobjective Logistics Optimization for Automated ATM Cash
Replenishment Process
- arxiv url: http://arxiv.org/abs/2304.13671v4
- Date: Fri, 30 Jun 2023 13:51:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 15:12:04.054471
- Title: Multiobjective Logistics Optimization for Automated ATM Cash
Replenishment Process
- Title(参考訳): ATMキャッシュリサイクルプロセスの多目的ロジスティックス最適化
- Authors: Bui Tien Thanh, Dinh Van Tuan, Tuan Anh Chi, Nguyen Van Dai, Nguyen
Tai Quang Dinh, and Nguyen Thu Thuy
- Abstract要約: ベトナムでは、ATMが2万台以上あるため、この問題を解決できる研究と技術ソリューションは依然として乏しいままだ。
本稿では,ATMキャッシュ補充のための車両ルーティング問題を一般化し,数学的モデルを提案し,様々な状況を評価するためのツールを提供した。
提案手法はATMキャッシュの運用コスト削減のメリットを生かして, 励まし効果を生み出した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the digital transformation era, integrating digital technology into every
aspect of banking operations improves process automation, cost efficiency, and
service level improvement. Although logistics for ATM cash is a crucial task
that impacts operating costs and consumer satisfaction, there has been little
effort to enhance it. Specifically, in Vietnam, with a market of more than
20,000 ATMs nationally, research and technological solutions that can resolve
this issue remain scarce. In this paper, we generalized the vehicle routing
problem for ATM cash replenishment, suggested a mathematical model and then
offered a tool to evaluate various situations. When being evaluated on the
simulated dataset, our proposed model and method produced encouraging results
with the benefits of cutting ATM cash operating costs.
- Abstract(参考訳): デジタルトランスフォーメーションの時代、銀行業務のあらゆる側面にデジタル技術を統合することで、プロセスの自動化、コスト効率、サービスレベルの改善が向上します。
ATMキャッシュのロジスティクスは、運用コストと消費者満足度に影響を与える重要なタスクであるが、それを強化する努力はほとんどなかった。
特にベトナムでは、ATMが全国で2万台以上あるため、この問題を解決できる研究と技術ソリューションは依然として乏しい。
本稿では,ATMキャッシュ補充のための車両ルーティング問題を一般化し,数学的モデルを提案し,様々な状況を評価するためのツールを提供した。
シミュレーションデータセットで評価すると,ATMキャッシュの運用コストを削減することで,提案手法とモデルが有効であることがわかった。
関連論文リスト
- Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning [15.615208767760663]
本研究は、ディープラーニングと強化学習技術を活用した倉庫における自動ピッキングシステムに焦点を当てた。
ロボットのピッキング性能と複雑な環境への適応性を向上する上で,これらの技術の有効性を実証する。
論文 参考訳(メタデータ) (2024-08-29T15:39:12Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - A Model for Calculating Cost of Applying Electronic Governance and
Robotic Process Automation to a Distributed Management System [5.439020425819001]
本稿では,eGov と RPA を分散管理システムに適用することにより,タスク達成のコストを計算する数学的モデルを提案する。
このモデルはこの種の最初のもののひとつであり、組織の効率性に関するコスト分析に関するさらなる研究が引き起こされることが期待されている。
論文 参考訳(メタデータ) (2023-10-02T00:15:46Z) - Deployment of Leader-Follower Automated Vehicle Systems for Smart Work
Zone Applications with a Queuing-based Traffic Assignment Approach [1.0355894890759376]
本論文は,ネットワーク上でのATMA車両の経路最適化に焦点をあて,低速動作に伴うシステムコストを最小化することを目的とする。
ATMAシステムによるシステムコストを特定するために,待ち行列に基づくトラフィック割り当て手法を提案する。
本手法は,小型ネットワークと大規模ネットワークを用いて検証し,キャパシティドロップモデリングとQBTD走行時間関数の利点を分析するための2つのベンチマークモデルと比較した。
論文 参考訳(メタデータ) (2023-07-23T16:35:05Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Multi-Agent Automated Machine Learning [54.14038920246645]
自動機械学習(AutoML)におけるモジュールの共同最適化のためのマルチエージェント自動機械学習(MA2ML)を提案する。
MA2MLはモジュール間の協力を強化するために各エージェントにクレジットを明示的に割り当て、検索効率を向上させるために政治外の学習を取り入れている。
実験により、MA2MLは計算コストの制約の下でImageNet上で最先端のトップ1の精度が得られることが示された。
論文 参考訳(メタデータ) (2022-10-17T13:32:59Z) - Optimization paper production through digitalization by developing an
assistance system for machine operators including quality forecast: a concept [50.591267188664666]
廃紙からの紙の製造は、特にエネルギー消費の観点からも、依然として非常に資源集約的な課題である。
我々は,その利用方法の欠如を特定し,操作支援システムと最先端の機械学習技術を用いた概念の実装を行った。
我々の主な目的は、利用可能なデータを活用するマシンオペレーターに状況に応じた知識を提供することである。
論文 参考訳(メタデータ) (2022-06-23T09:54:35Z) - An Automated Robotic Arm: A Machine Learning Approach [0.0]
現代の産業は、手動によるシステムの制御から自動化へと急速にシフトしている。
コンピュータベースのシステムは、品質と生産性を向上させることができるが、作業には柔軟性がない。
工業的重要性の1つは、ある場所から別の場所へ物を選んで配置することである。
論文 参考訳(メタデータ) (2022-01-07T10:33:01Z) - A Time-Frequency based Suspicious Activity Detection for Anti-Money
Laundering [0.0]
マネーロンダリングは、犯罪者が犯罪の収益を金融システムに注入するために使う重要なメカニズムである。
これらの機関の現在のシステムのほとんどはルールベースであり、非効率である。
本稿では、金融取引の2次元表現を利用した時間周波数分析に基づく新しい特徴セットを提案する。
論文 参考訳(メタデータ) (2020-11-17T08:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。