論文の概要: Enhancing Precision of Automated Teller Machines Network Quality Assessment: Machine Learning and Multi Classifier Fusion Approaches
- arxiv url: http://arxiv.org/abs/2501.01067v1
- Date: Thu, 02 Jan 2025 05:33:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:12:58.320723
- Title: Enhancing Precision of Automated Teller Machines Network Quality Assessment: Machine Learning and Multi Classifier Fusion Approaches
- Title(参考訳): 自動テラーマシンの精度向上のためのネットワーク品質評価:機械学習とマルチクラス化融合によるアプローチ
- Authors: Alireza Safarzadeh, Mohammad Reza Jamali, Behzad Moshiri,
- Abstract要約: 本研究では、ATMの信頼性を高めるためにマルチクラス化融合技術を利用するデータ融合手法を提案する。
提案したフレームワークは、スタックに多様な分類モデルを統合することで、誤報の劇的な減少を3.56パーセントからわずか0.71パーセントに達成している。
このマルチクラス化融合法は個々のモデルの強度を合成し、大幅なコスト削減と運用上の意思決定の改善をもたらす。
- 参考スコア(独自算出の注目度): 2.2670946312994
- License:
- Abstract: Ensuring reliable ATM services is essential for modern banking, directly impacting customer satisfaction and the operational efficiency of financial institutions. This study introduces a data fusion approach that utilizes multi-classifier fusion techniques, with a special focus on the Stacking Classifier, to enhance the reliability of ATM networks. To address class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was applied, enabling balanced learning for both frequent and rare events. The proposed framework integrates diverse classification models - Random Forest, LightGBM, and CatBoost - within a Stacking Classifier, achieving a dramatic reduction in false alarms from 3.56 percent to just 0.71 percent, along with an outstanding overall accuracy of 99.29 percent. This multi-classifier fusion method synthesizes the strengths of individual models, leading to significant cost savings and improved operational decision-making. By demonstrating the power of machine learning and data fusion in optimizing ATM status detection, this research provides practical and scalable solutions for financial institutions aiming to enhance their ATM network performance and customer satisfaction.
- Abstract(参考訳): 信頼性の高いATMサービスの確保は、顧客の満足度と金融機関の運用効率に直接影響を及ぼす現代銀行にとって不可欠である。
本研究では、ATMネットワークの信頼性を高めるため、マルチクラス化融合技術を利用したデータ融合手法を提案する。
クラス不均衡に対処するために、SMOTE(Synthetic Minority Over-Sampling Technique)を適用し、頻繁なイベントと稀なイベントの両方でバランスの取れた学習を可能にした。
提案したフレームワークは、ランダムフォレスト、LightGBM、CatBoostといった多様な分類モデルをスタックング分類器に統合し、3.56パーセントからわずか0.71パーセントに劇的に減少させ、全体的な精度は99.29パーセントに向上した。
このマルチクラス化融合法は個々のモデルの強度を合成し、大幅なコスト削減と運用上の意思決定の改善をもたらす。
本研究は、ATMステータス検出の最適化における機械学習とデータ融合のパワーを実証することにより、ATMネットワークの性能と顧客満足度を高めることを目的とした、金融機関に対して実用的でスケーラブルなソリューションを提供する。
関連論文リスト
- iFuzzyTL: Interpretable Fuzzy Transfer Learning for SSVEP BCI System [24.898026682692688]
本研究では,解釈可能なファジィ変換学習(iFuzzyTL)を利用した高度な分類手法について検討する。
iFuzzyTLは、ファジィ推論システムとアテンション機構を統合することで、人間の解釈可能な形式で入力信号処理と分類を洗練する。
モデルの有効性は3つのデータセットで示される。
論文 参考訳(メタデータ) (2024-10-16T06:07:23Z) - An Innovative Attention-based Ensemble System for Credit Card Fraud Detection [5.486205584465161]
本稿では,クレジットカード不正検出のためのユニークな注意に基づくアンサンブルモデルを提案する。
アンサンブルモデルの精度は 99.95% であり、曲線 (AUC) の下の面積は 1 である。
論文 参考訳(メタデータ) (2024-10-01T09:56:23Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach [4.341096233663623]
本研究では、ニューラルネットワーク(NN)とSMOTE(Synthet ic Minority Over-Sampling Technique)を組み合わせて検出性能を向上させる革新的な手法を提案する。
この研究は、クレジットカード取引データに固有の不均衡に対処し、堅牢で正確な不正検出のための技術的進歩に焦点を当てた。
論文 参考訳(メタデータ) (2024-02-27T02:26:04Z) - Churn Prediction via Multimodal Fusion Learning:Integrating Customer
Financial Literacy, Voice, and Behavioral Data [14.948017876322597]
本稿では,金融サービスプロバイダの顧客リスクレベルを特定するためのマルチモーダル融合学習モデルを提案する。
弊社のアプローチは、顧客感情の財務リテラシー(FL)レベルと、財務行動データを統合している。
我々の新しいアプローチは、チャーン予測の顕著な改善を示し、テスト精度91.2%、平均精度66、マクロ平均F1スコア54を達成した。
論文 参考訳(メタデータ) (2023-12-03T06:28:55Z) - ATM Fraud Detection using Streaming Data Analytics [3.4543720783285052]
本研究では,静的およびストリーミングの文脈でATMの不正検出を行う手法を提案する。
どちらの文脈でも、RFは最高のモデルであることが判明した。
また、RFは次の最高の性能モデルよりも統計的に有意であることが実証的に証明されている。
論文 参考訳(メタデータ) (2023-03-08T23:40:18Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
マルチモーダル冗長性(MMRNet)を用いた信頼度の高いオブジェクト検出・分割システムを提案する。
これは、マルチモーダル冗長の概念を導入し、デプロイ中のセンサ障害問題に対処する最初のシステムである。
システム全体の出力信頼性と不確実性を測定するために,すべてのモダリティからの出力を利用する新しいラベルフリーマルチモーダル整合性(MC)スコアを提案する。
論文 参考訳(メタデータ) (2022-10-19T19:15:07Z) - Multi-Agent Automated Machine Learning [54.14038920246645]
自動機械学習(AutoML)におけるモジュールの共同最適化のためのマルチエージェント自動機械学習(MA2ML)を提案する。
MA2MLはモジュール間の協力を強化するために各エージェントにクレジットを明示的に割り当て、検索効率を向上させるために政治外の学習を取り入れている。
実験により、MA2MLは計算コストの制約の下でImageNet上で最先端のトップ1の精度が得られることが示された。
論文 参考訳(メタデータ) (2022-10-17T13:32:59Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。