A Control-Centric Benchmark for Video Prediction
- URL: http://arxiv.org/abs/2304.13723v1
- Date: Wed, 26 Apr 2023 17:59:45 GMT
- Title: A Control-Centric Benchmark for Video Prediction
- Authors: Stephen Tian, Chelsea Finn, Jiajun Wu
- Abstract summary: We propose a benchmark for action-conditioned video prediction in the form of a control benchmark.
Our benchmark includes simulated environments with 11 task categories and 310 task instance definitions.
We then leverage our benchmark to study the effects of scaling model size, quantity of training data, and model ensembling.
- Score: 69.22614362800692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video is a promising source of knowledge for embodied agents to learn models
of the world's dynamics. Large deep networks have become increasingly effective
at modeling complex video data in a self-supervised manner, as evaluated by
metrics based on human perceptual similarity or pixel-wise comparison. However,
it remains unclear whether current metrics are accurate indicators of
performance on downstream tasks. We find empirically that for planning robotic
manipulation, existing metrics can be unreliable at predicting execution
success. To address this, we propose a benchmark for action-conditioned video
prediction in the form of a control benchmark that evaluates a given model for
simulated robotic manipulation through sampling-based planning. Our benchmark,
Video Prediction for Visual Planning ($VP^2$), includes simulated environments
with 11 task categories and 310 task instance definitions, a full planning
implementation, and training datasets containing scripted interaction
trajectories for each task category. A central design goal of our benchmark is
to expose a simple interface -- a single forward prediction call -- so it is
straightforward to evaluate almost any action-conditioned video prediction
model. We then leverage our benchmark to study the effects of scaling model
size, quantity of training data, and model ensembling by analyzing five
highly-performant video prediction models, finding that while scale can improve
perceptual quality when modeling visually diverse settings, other attributes
such as uncertainty awareness can also aid planning performance.
Related papers
- Video In-context Learning [46.40277880351059]
In this paper, we study video in-context learning, where the model starts from an existing video clip and generates diverse potential future sequences.
To achieve this, we provide a clear definition of the task, and train an autoregressive Transformer on video datasets.
We design various evaluation metrics, including both objective and subjective measures, to demonstrate the visual quality and semantic accuracy of generation results.
arXiv Detail & Related papers (2024-07-10T04:27:06Z) - Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
We explore the task of generating future sensor observations conditioned on the past.
We leverage the large-scale pretraining of image diffusion models which can handle multi-modality.
We create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes.
arXiv Detail & Related papers (2024-04-17T16:56:31Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - KINet: Unsupervised Forward Models for Robotic Pushing Manipulation [8.572983995175909]
We introduce KINet -- an unsupervised framework to reason about object interactions based on a keypoint representation.
Our model learns to associate objects with keypoint coordinates and discovers a graph representation of the system.
By learning to perform physical reasoning in the keypoint space, our model automatically generalizes to scenarios with a different number of objects.
arXiv Detail & Related papers (2022-02-18T03:32:08Z) - FitVid: Overfitting in Pixel-Level Video Prediction [117.59339756506142]
We introduce a new architecture, named FitVid, which is capable of severe overfitting on the common benchmarks.
FitVid outperforms the current state-of-the-art models across four different video prediction benchmarks on four different metrics.
arXiv Detail & Related papers (2021-06-24T17:20:21Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.