論文の概要: Transferring Procedural Knowledge across Commonsense Tasks
- arxiv url: http://arxiv.org/abs/2304.13867v2
- Date: Thu, 27 Jul 2023 21:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 15:53:06.826477
- Title: Transferring Procedural Knowledge across Commonsense Tasks
- Title(参考訳): コモンセンスのタスクにまたがる手続き的知識の伝達
- Authors: Yifan Jiang, Filip Ilievski, Kaixin Ma
- Abstract要約: 本稿では,AIモデルによる手続き的知識を新しい物語課題に透過的に伝達する能力について検討する。
我々は、最先端のモデリングアーキテクチャ、トレーニングレシスタンス、拡張戦略を統合する包括的なフレームワークであるLEAPを設計する。
ドメイン内および外部タスクによる我々の実験は、異なるアーキテクチャの相互作用、トレーニング体制、拡張戦略に関する洞察を明らかにします。
- 参考スコア(独自算出の注目度): 18.389162606679033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stories about everyday situations are an essential part of human
communication, motivating the need to develop AI agents that can reliably
understand these stories. Despite the long list of supervised methods for story
completion and procedural understanding, current AI has no mechanisms to
automatically track and explain procedures in unseen stories. To bridge this
gap, we study the ability of AI models to transfer procedural knowledge to
novel narrative tasks in a transparent manner. We design LEAP: a comprehensive
framework that integrates state-of-the-art modeling architectures, training
regimes, and augmentation strategies based on both natural and synthetic
stories. To address the lack of densely annotated training data, we devise a
robust automatic labeler based on few-shot prompting to enhance the augmented
data. Our experiments with in- and out-of-domain tasks reveal insights into the
interplay of different architectures, training regimes, and augmentation
strategies. LEAP's labeler has a clear positive impact on out-of-domain
datasets, while the resulting dense annotation provides native explainability.
- Abstract(参考訳): 日常的な状況に関するストーリーは人間のコミュニケーションの重要な部分であり、これらのストーリーを確実に理解できるAIエージェントを開発する必要性を動機付けている。
ストーリー補完と手続き的理解のための教師付きメソッドの長いリストにもかかわらず、現在のAIには、目に見えないストーリーの手順を自動的に追跡し説明するメカニズムがない。
このギャップを埋めるために、我々は、AIモデルが手続き的知識を透明な方法で新しい物語課題に伝達する能力について研究する。
LEAP: 最先端のモデリングアーキテクチャ、トレーニング体制、自然なストーリーと合成ストーリーの両方に基づいた拡張戦略を統合する包括的なフレームワークを設計します。
高度に注釈付けされたトレーニングデータの欠如に対処するため,数発のプロンプトに基づく堅牢な自動ラベルラを考案し,拡張データを強化する。
ドメイン内および外部タスクによる我々の実験は、異なるアーキテクチャの相互作用、トレーニング体制、拡張戦略に関する洞察を明らかにします。
LEAPのラベルには、ドメイン外のデータセットに明確なポジティブな影響がある。
関連論文リスト
- Semantic-Geometric-Physical-Driven Robot Manipulation Skill Transfer via Skill Library and Tactile Representation [6.324290412766366]
知識グラフに基づくスキルライブラリフレームワークは,高度なスキル認識と空間的意味理解を備えたロボットを支援する。
動作レベルでは,A*アルゴリズムとスキルライブラリを用いて適応軌道伝達法を開発した。
身体レベルでは,触覚に基づく適応的輪郭抽出と姿勢知覚法を導入する。
論文 参考訳(メタデータ) (2024-11-18T16:42:07Z) - Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
継続的な学習は、モデルが学習した知識を維持しながら、新しいデータから学習することを可能にする。
画像のラベル情報で利用できるセマンティック知識は、以前に取得したセマンティッククラスの知識と関連する重要なセマンティック情報を提供する。
テキスト埋め込みを用いて意味的類似性を把握し,タスク内およびタスク間のセマンティックガイダンスの統合を提案する。
論文 参考訳(メタデータ) (2024-08-02T07:51:44Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents [19.249596397679856]
AriGraphは、環境を探索しながら意味記憶とエピソード記憶を統合するメモリグラフである。
我々は,Ariadne LLMエージェントが対話型テキストゲーム環境における複雑なタスクを,人間プレイヤーでも効果的に処理できることを実証した。
論文 参考訳(メタデータ) (2024-07-05T09:06:47Z) - Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos [16.333295670635557]
本稿では,エージェントが行動手順を論理的に構築し,戦略的手続き計画を構築する能力について考察する。
この計画は、実生活の指導ビデオに示されているように、初期視覚観察から対象視結果へのナビゲートに不可欠である。
我々は,学習データから抽出した確率論的手続き的知識グラフを利用する,知識向上型プロジェクションプランニングシステムKEPPを提案する。
論文 参考訳(メタデータ) (2024-03-05T08:55:51Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - ArK: Augmented Reality with Knowledge Interactive Emergent Ability [115.72679420999535]
基礎モデルから新しいドメインへの知識記憶の伝達を学習する無限エージェントを開発する。
私たちのアプローチの核心は、Augmented Reality with Knowledge Inference Interaction (ArK)と呼ばれる新しいメカニズムである。
我々のArKアプローチは,大規模な基礎モデルと組み合わせることで,生成された2D/3Dシーンの品質を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-05-01T17:57:01Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。