論文の概要: LSTM based IoT Device Identification
- arxiv url: http://arxiv.org/abs/2304.13905v1
- Date: Thu, 27 Apr 2023 01:13:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 14:33:13.047444
- Title: LSTM based IoT Device Identification
- Title(参考訳): LSTMによるIoTデバイス識別
- Authors: Kahraman Kostas
- Abstract要約: 本稿では,Long short-term memory (LSTM) を用いて,Aaltoデータセット内のデバイスを識別する手法を提案する。
本研究では,Long short-term memory(LSTM)を用いて,Aaltoデータセット内のデバイスを識別する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the use of the Internet of Things is becoming more and more popular,
many security vulnerabilities are emerging with the large number of devices
being introduced to the market. In this environment, IoT device identification
methods provide a preventive security measure as an important factor in
identifying these devices and detecting the vulnerabilities they suffer from.
In this study, we present a method that identifies devices in the Aalto dataset
using Long short-term memory (LSTM)
- Abstract(参考訳): モノのインターネット(Internet of Things, IoT)の利用がますます人気になっているが、多くのセキュリティ脆弱性が出現し、多くのデバイスが市場に投入されている。
この環境では、IoTデバイス識別方法は、これらのデバイスを特定し、彼らが苦しむ脆弱性を検出する上で重要な要素として、予防的セキュリティ対策を提供する。
本研究では,Long Short-term memory(LSTM)を用いて,Aaltoデータセット内のデバイスを識別する手法を提案する。
関連論文リスト
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways [45.44831696628473]
本稿では,IoTゲートウェイとホームオートメーションプラットフォームがIoTトラフィックのキャプチャと分析を行うことを可能にする,オープンソースの法医学ツールであるIoTScentを紹介する。
IoTScentは特に、Zigbeeや6LoWPAN、Threadといった多くのIoT固有のプロトコルの基礎であるIEEE5.4ベースのトラフィックを操作するように設計されている。
この作業は、Zigbeeトラフィックからデバイス識別を実行するためのツールの使用を実証する実用的なユースケースを含む、IoTScentツールの包括的な説明を提供する。
論文 参考訳(メタデータ) (2023-10-05T09:10:05Z) - CNN based IoT Device Identification [0.0]
本稿では、畳み込みニューラルネットワーク(CNN)を用いて、Aaltoデータセット内のデバイスを識別する手法を提案する。
本研究では、畳み込みニューラルネットワーク(CNN)を用いて、Aaltoデータセット内のデバイスを識別する手法を提案する。
論文 参考訳(メタデータ) (2023-04-27T00:37:16Z) - IoT Device Identification Based on Network Communication Analysis Using
Deep Learning [43.0717346071013]
組織のネットワークに対する攻撃のリスクは、セキュリティの低いIoTデバイスの使用の増加によって増大している。
この脅威に対処し、ネットワークを保護するために、組織は通常、ホワイトリストのIoTデバイスのみをネットワーク上で許可するセキュリティポリシを実装します。
本研究では、ネットワーク上で許可されたIoTデバイスの自動識別のためのネットワーク通信にディープラーニングを適用した。
論文 参考訳(メタデータ) (2023-03-02T13:44:58Z) - Is this IoT Device Likely to be Secure? Risk Score Prediction for IoT
Devices Using Gradient Boosting Machines [11.177584118932572]
セキュリティリスク評価と予測は、IoT(Internet of Things)デバイスをデプロイする組織にとって重要なものだ。
本稿では,IoTデバイスに関する情報に基づいて,新たなリスク予測を提案する。
論文 参考訳(メタデータ) (2021-11-23T13:41:29Z) - Rapid IoT Device Identification at the Edge [5.213147236587845]
デバイスDNSトラフィックに基づいてトレーニングされたニューラルネットワークを用いて,IoTデバイスを高速に識別する手法を提案する。
本手法は,第1接続後のDNS第2レベルドメイントラフィックの第1秒にモデルを適合させることで,デバイスを識別する。
製品タイプとデバイスメーカはそれぞれ82%と93%の精度で、27の異なるメーカから30のコンシューマIoTデバイスを分類します。
論文 参考訳(メタデータ) (2021-10-26T18:11:38Z) - Machine Learning for the Detection and Identification of Internet of
Things (IoT) Devices: A Survey [16.3730669259576]
モノのインターネット(IoT)は、さまざまな新興サービスやアプリケーションを可能にする、日常生活の不可欠な部分になりつつあります。
IoTを確保する第一歩は、不正なIoTデバイスを検出し、正当なものを識別することです。
iotデバイスの識別と検出を,デバイス固有のパターン認識,ディープラーニングによるデバイス識別,教師なしデバイス識別,異常デバイス検出の4つのカテゴリに分類した。
論文 参考訳(メタデータ) (2021-01-25T15:51:04Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
IoTデバイスのセキュリティ面は幼児の分野です。
ネットワーク上の特定のIoTノードの悪意ある振る舞いを認識するシステムを開発した。
畳み込みニューラルネットワークと監視により、ネットワーク内にインストール可能な中央ノードを使用して、IoTのマルウェア検出が可能になった。
論文 参考訳(メタデータ) (2020-10-13T10:56:33Z) - Smart Home, security concerns of IoT [91.3755431537592]
IoT(モノのインターネット)は、国内環境において広く普及している。
人々は自宅をスマートホームにリニューアルしているが、インターネットに接続された多くのデバイスを常時オンの環境センサーで所有するというプライバシー上の懸念はいまだに不十分だ。
デフォルトパスワードと弱いパスワード、安価な材料とハードウェア、暗号化されていない通信は、IoTデバイスの主要な脅威と脆弱性として識別される。
論文 参考訳(メタデータ) (2020-07-06T10:36:11Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。