論文の概要: Attacks on Robust Distributed Learning Schemes via Sensitivity Curve
Maximization
- arxiv url: http://arxiv.org/abs/2304.14024v1
- Date: Thu, 27 Apr 2023 08:41:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 14:07:06.693293
- Title: Attacks on Robust Distributed Learning Schemes via Sensitivity Curve
Maximization
- Title(参考訳): 感度曲線最大化によるロバスト分散学習方式の攻撃
- Authors: Christian A. Schroth and Stefan Vlaski and Abdelhak M. Zoubir
- Abstract要約: 曲線の感度(SCM)に基づく新たな攻撃法を提案する。
我々は, 従来の頑健なアグリゲーションスキームを, 小さいが効果的な摂動を注入することで破壊できることを実証した。
- 参考スコア(独自算出の注目度): 37.464005524259356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed learning paradigms, such as federated or decentralized learning,
allow a collection of agents to solve global learning and optimization problems
through limited local interactions. Most such strategies rely on a mixture of
local adaptation and aggregation steps, either among peers or at a central
fusion center. Classically, aggregation in distributed learning is based on
averaging, which is statistically efficient, but susceptible to attacks by even
a small number of malicious agents. This observation has motivated a number of
recent works, which develop robust aggregation schemes by employing robust
variations of the mean. We present a new attack based on sensitivity curve
maximization (SCM), and demonstrate that it is able to disrupt existing robust
aggregation schemes by injecting small, but effective perturbations.
- Abstract(参考訳): 分散学習パラダイム(federated あるいは decentralized learning)は、エージェントの集まりが、限られた局所的な相互作用を通じてグローバル学習と最適化の問題を解決することを可能にする。
このような戦略のほとんどは、ピア間や中央融合センターにおいて、局所的な適応と集約のステップの混合に依存している。
古典的には、分散学習における集約は、統計的に効率的だが少数の悪意のあるエージェントによる攻撃を受けやすい平均化に基づいている。
この観察は、平均のロバストなバリエーションを用いてロバストな集約スキームを開発する最近の多くの研究の動機となっている。
本研究では,感度曲線最大化(scm)に基づく新たな攻撃を提示し,小さいが効果的な摂動を注入することで,既存のロバストアグリゲーションスキームをディスラプトできることを実証する。
関連論文リスト
- FedRDF: A Robust and Dynamic Aggregation Function against Poisoning
Attacks in Federated Learning [0.0]
Federated Learning(FL)は、集中型機械学習(ML)デプロイメントに関連する典型的なプライバシ問題に対する、有望なアプローチである。
そのよく知られた利点にもかかわらず、FLはビザンツの行動や毒殺攻撃のようなセキュリティ攻撃に弱い。
提案手法は各種モデル毒殺攻撃に対して試験され,最先端の凝集法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-15T16:42:04Z) - Imitation Learning based Alternative Multi-Agent Proximal Policy
Optimization for Well-Formed Swarm-Oriented Pursuit Avoidance [15.498559530889839]
本稿では,分散学習に基づく代替的マルチエージェント・プロキシ・ポリシー最適化(IA-MAPPO)アルゴリズムを提案する。
擬似学習を利用して生成コントローラを分散化し,通信オーバーヘッドを低減し,スケーラビリティを向上させる。
シミュレーションの結果,IA-MAPPOの有効性が検証され,広範囲なアブレーション実験により,通信オーバーヘッドが著しく減少する集中型解に匹敵する性能が示された。
論文 参考訳(メタデータ) (2023-11-06T06:58:16Z) - Multi-Agent Reinforcement Learning-Based UAV Pathfinding for Obstacle Avoidance in Stochastic Environment [12.122881147337505]
マルチエージェント強化学習に基づく分散実行手法を用いた新しい集中型学習法を提案する。
このアプローチでは、エージェントは集中型プランナーとのみ通信し、オンラインで分散的な決定を行う。
訓練効率を高めるため,多段階強化学習において多段階値収束を行う。
論文 参考訳(メタデータ) (2023-10-25T14:21:22Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
機械学習モデルの敵攻撃に対する脆弱性は、近年、かなりの注目を集めている。
この研究は、個々のエージェントが様々な強度摂動空間に従属するグラフ上の敵の訓練を研究する。
論文 参考訳(メタデータ) (2023-03-23T15:05:16Z) - Robust and Efficient Aggregation for Distributed Learning [37.203175053625245]
平均化に基づく分散学習スキームは、外れ値に影響を受けやすいことが知られている。
単一の悪意のあるエージェントは、平均的な分散学習アルゴリズムを任意に貧弱なモデルに駆動することができる。
これは、中央値とトリミング平均の変動に基づくロバストアグリゲーションスキームの発展を動機付けている。
論文 参考訳(メタデータ) (2022-04-01T17:17:41Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
協調型マルチエージェント強化学習(MARL)は,エージェント数で指数関数的に大きい状態空間と動作空間により,スケーラビリティの問題に直面する。
本稿では,学習分散実行パラダイムに局所報酬を組み込んだ,新しい価値に基づくマルチエージェントアルゴリズム LOMAQ を提案する。
論文 参考訳(メタデータ) (2021-09-22T10:08:15Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。