論文の概要: Multi-Agent Reinforcement Learning-Based UAV Pathfinding for Obstacle Avoidance in Stochastic Environment
- arxiv url: http://arxiv.org/abs/2310.16659v2
- Date: Fri, 25 Oct 2024 08:56:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:33:42.384560
- Title: Multi-Agent Reinforcement Learning-Based UAV Pathfinding for Obstacle Avoidance in Stochastic Environment
- Title(参考訳): 確率環境における障害物回避のためのマルチエージェント強化学習型UAVパスフィニング
- Authors: Qizhen Wu, Kexin Liu, Lei Chen, Jinhu Lü,
- Abstract要約: マルチエージェント強化学習に基づく分散実行手法を用いた新しい集中型学習法を提案する。
このアプローチでは、エージェントは集中型プランナーとのみ通信し、オンラインで分散的な決定を行う。
訓練効率を高めるため,多段階強化学習において多段階値収束を行う。
- 参考スコア(独自算出の注目度): 12.122881147337505
- License:
- Abstract: Traditional methods plan feasible paths for multiple agents in the stochastic environment. However, the methods' iterations with the changes in the environment result in computation complexities, especially for the decentralized agents without a centralized planner. Although reinforcement learning provides a plausible solution because of the generalization for different environments, it struggles with enormous agent-environment interactions in training. Here, we propose a novel centralized training with decentralized execution method based on multi-agent reinforcement learning, which is improved based on the idea of model predictive control. In our approach, agents communicate only with the centralized planner to make decentralized decisions online in the stochastic environment. Furthermore, considering the communication constraint with the centralized planner, each agent plans feasible paths through the extended observation, which combines information on neighboring agents based on the distance-weighted mean field approach. Inspired by the rolling optimization approach of model predictive control, we conduct multi-step value convergence in multi-agent reinforcement learning to enhance the training efficiency, which reduces the expensive interactions in convergence. Experiment results in both comparison, ablation, and real-robot studies validate the effectiveness and generalization performance of our method.
- Abstract(参考訳): 従来の手法は確率的環境下で複数のエージェントに対して実現可能な経路を計画する。
しかし、環境の変化に伴う手法の反復は計算の複雑さをもたらし、特に集中型プランナーを持たない分散化されたエージェントに対してである。
強化学習は、異なる環境の一般化のため、妥当なソリューションを提供するが、訓練におけるエージェントと環境の相互作用に苦しむ。
本稿では,モデル予測制御の考え方に基づいて改良されたマルチエージェント強化学習に基づく分散実行方式による新しい集中型学習を提案する。
提案手法では,エージェントは集中型プランナーとのみ通信し,確率的環境下で分散的な意思決定を行う。
さらに、集中型プランナーとの通信制約を考慮すると、各エージェントは、距離重み付け平均場アプローチに基づく近隣エージェントの情報を組み合わせた、拡張された観察を通して実現可能な経路を計画する。
モデル予測制御の転がり最適化手法に着想を得て,多エージェント強化学習において多段階値収束を行い,トレーニング効率を向上させることにより,収束における高価な相互作用を低減する。
比較,アブレーション,実ロボットによる実験により,本手法の有効性と一般化性能が検証された。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Imitation Learning based Alternative Multi-Agent Proximal Policy
Optimization for Well-Formed Swarm-Oriented Pursuit Avoidance [15.498559530889839]
本稿では,分散学習に基づく代替的マルチエージェント・プロキシ・ポリシー最適化(IA-MAPPO)アルゴリズムを提案する。
擬似学習を利用して生成コントローラを分散化し,通信オーバーヘッドを低減し,スケーラビリティを向上させる。
シミュレーションの結果,IA-MAPPOの有効性が検証され,広範囲なアブレーション実験により,通信オーバーヘッドが著しく減少する集中型解に匹敵する性能が示された。
論文 参考訳(メタデータ) (2023-11-06T06:58:16Z) - Decentralized Adaptive Formation via Consensus-Oriented Multi-Agent
Communication [9.216867817261493]
本稿では,Consensus-based Decentralized Adaptive Formation (Cons-DecAF) フレームワークを提案する。
具体的には、コンセンサス指向のマルチエージェント通信(ConsMAC)という新しいマルチエージェント強化学習手法を開発する。
エージェントの特定の位置を事前に割り当てる代わりに、Hausdorff 距離による変位に基づく生成を用いて、生成効率を著しく向上する。
論文 参考訳(メタデータ) (2023-07-23T10:41:17Z) - Expeditious Saliency-guided Mix-up through Random Gradient Thresholding [89.59134648542042]
混合学習アプローチはディープニューラルネットワークの一般化能力向上に有効であることが証明されている。
本稿では,両経路の分岐点に位置する新しい手法を提案する。
我々はR-Mixという手法を「Random Mix-up」という概念にちなむ。
より良い意思決定プロトコルが存在するかどうかという問題に対処するために、我々は、ミックスアップポリシーを決定する強化学習エージェントを訓練する。
論文 参考訳(メタデータ) (2022-12-09T14:29:57Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
我々は,モデルベース強化学習(MBRL)を用いて協調環境における集中型トレーニングをさらに活用するMAMBAという新しい手法を提案する。
エージェント間のコミュニケーションは、実行期間中に各エージェントのワールドモデルを維持するのに十分であり、一方、仮想ロールアウトはトレーニングに使用でき、環境と対話する必要がなくなる。
論文 参考訳(メタデータ) (2022-05-25T08:35:00Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
連立学習パラダイムにおける協調的意思決定のための独立強化学習(IRL)の検討
FLはエージェントとリモート中央サーバ間の過剰な通信オーバーヘッドを生成する。
本稿では,システムの実用性向上のための2つの高度な最適化手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T07:21:43Z) - Adaptive Serverless Learning [114.36410688552579]
本研究では,データから学習率を動的に計算できる適応型分散学習手法を提案する。
提案アルゴリズムは, 作業者数に対して線形高速化が可能であることを示す。
通信効率のオーバーヘッドを低減するため,通信効率のよい分散訓練手法を提案する。
論文 参考訳(メタデータ) (2020-08-24T13:23:02Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
目標を他のエージェントと整合させる人間の能力の下にあるのは、他人の意図を予測し、自分たちの計画を積極的に更新する能力である。
分散型マルチエージェントレンデブーのためのモデルに基づく強化学習手法である階層型予測計画(HPP)を提案する。
論文 参考訳(メタデータ) (2020-03-15T19:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。