Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics
Models
- URL: http://arxiv.org/abs/2304.14057v1
- Date: Thu, 27 Apr 2023 09:38:49 GMT
- Title: Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics
Models
- Authors: Jia-Jie Zhu
- Abstract summary: Given a nonlinear data-driven dynamical system model, how can one propagate the ambiguity sets forward for multiple steps?
This problem is the key to solving distributionally robust control and learning-based control of such learned system models under a data-distribution shift.
We propose an algorithm that exactly propagates ambiguity sets through nonlinear data-driven models using the Koopman operator and CME, via the kernel maximum mean discrepancy geometry.
- Score: 3.743859059772078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper provides answers to an open problem: given a nonlinear data-driven
dynamical system model, e.g., kernel conditional mean embedding (CME) and
Koopman operator, how can one propagate the ambiguity sets forward for multiple
steps? This problem is the key to solving distributionally robust control and
learning-based control of such learned system models under a data-distribution
shift. Different from previous works that use either static ambiguity sets,
e.g., fixed Wasserstein balls, or dynamic ambiguity sets under known piece-wise
linear (or affine) dynamics, we propose an algorithm that exactly propagates
ambiguity sets through nonlinear data-driven models using the Koopman operator
and CME, via the kernel maximum mean discrepancy geometry. Through both
theoretical and numerical analysis, we show that our kernel ambiguity sets are
the natural geometric structure for the learned data-driven dynamical system
models.
Related papers
- Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - A graph convolutional autoencoder approach to model order reduction for
parametrized PDEs [0.8192907805418583]
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM)
We develop a non-intrusive and data-driven nonlinear reduction approach, exploiting GNNs to encode the reduced manifold and enable fast evaluations of parametrized PDEs.
arXiv Detail & Related papers (2023-05-15T12:01:22Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - $Φ$-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation [3.2873782624127843]
We develop a physics-informed dynamical variational autoencoder ($Phi$-DVAE) to embed diverse data streams into time-evolving physical systems.
Our approach combines a standard, possibly nonlinear, filter for the latent state-space model and a VAE, to assimilate the unstructured data into the latent dynamical system.
A variational Bayesian framework is used for the joint estimation of the encoding, latent states, and unknown system parameters.
arXiv Detail & Related papers (2022-09-30T17:34:48Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Variational Inference and Learning of Piecewise-linear Dynamical Systems [33.23231229260119]
We propose a variational approximation of piecewise linear dynamical systems.
We show that the model parameters can be split into two sets, static and dynamic parameters, and that the former parameters can be estimated off-line together with the number of linear modes, or the number of states of the switching variable.
arXiv Detail & Related papers (2020-06-02T14:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.