論文の概要: Why not both? Complementing explanations with uncertainty, and the role
of self-confidence in Human-AI collaboration
- arxiv url: http://arxiv.org/abs/2304.14130v1
- Date: Thu, 27 Apr 2023 12:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 13:28:01.547662
- Title: Why not both? Complementing explanations with uncertainty, and the role
of self-confidence in Human-AI collaboration
- Title(参考訳): 両方じゃないの?
不確実性を伴う説明の補完とヒューマン・aiコラボレーションにおける自信の役割
- Authors: Ioannis Papantonis, Vaishak Belle
- Abstract要約: 本研究では,不確実性評価とモデル説明がモデルに対するユーザの信頼,理解,信頼にどのように影響するかを明らかにするための実証的研究を行う。
また,合意と切り換え率に基づいて,後者が分析結果を歪める可能性についても論じる。
- 参考スコア(独自算出の注目度): 12.47276164048813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI and ML models have already found many applications in critical domains,
such as healthcare and criminal justice. However, fully automating such
high-stakes applications can raise ethical or fairness concerns. Instead, in
such cases, humans should be assisted by automated systems so that the two
parties reach a joint decision, stemming out of their interaction. In this work
we conduct an empirical study to identify how uncertainty estimates and model
explanations affect users' reliance, understanding, and trust towards a model,
looking for potential benefits of bringing the two together. Moreover, we seek
to assess how users' behaviour is affected by their own self-confidence in
their abilities to perform a certain task, while we also discuss how the latter
may distort the outcome of an analysis based on agreement and switching
percentages.
- Abstract(参考訳): AIやMLモデルは、医療や刑事司法など、多くの重要な分野にすでに応用されている。
しかし、そのような高度なアプリケーションを完全に自動化することは倫理的、公正な懸念を引き起こす可能性がある。
そのような場合、人間は自動化されたシステムによって支援され、両者が協力関係から引き起こされる共同決定にたどり着くべきである。
本研究は,不確実性評価とモデル説明がモデルに対するユーザの信頼,理解,信頼にどのように影響するかを明らかにするための実証的研究である。
さらに, 利用者の行動が, 自己の自信によって, 特定のタスクを遂行する能力にどのように影響するかを評価するとともに, 合意や切り換え率に基づいて分析結果がいかに歪んでいるかについても検討する。
関連論文リスト
- To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
最適な人間とAIのコラボレーションのためのビジョンは、人間のAIシステムへの「適切な依存」を必要とする。
実際には、アウト・オブ・ディストリビューションデータにおける機械学習モデルの性能格差は、データセット固有のパフォーマンスフィードバックを信頼できないものにしている。
論文 参考訳(メタデータ) (2024-09-22T09:43:27Z) - Human-in-the-loop Fairness: Integrating Stakeholder Feedback to Incorporate Fairness Perspectives in Responsible AI [4.0247545547103325]
公正は人工知能(AI)を用いたリスクの高い意思決定への関心が高まっている
普遍的に受け入れられる公正度尺度はなく、公正性は文脈依存であり、公正と見なされるものに関して矛盾する視点があるかもしれない。
私たちの作業は、ステークホルダーが特定の決定インスタンスとその公正性に関する結果に対してフィードバックをすることができるアプローチに従っています。
論文 参考訳(メタデータ) (2023-12-13T11:17:29Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
これは、数学的推論に倫理的考察をもたらす重要な方法であると主張する。
我々は、2021年12月のOmicron型COVID-19の拡散について、英国政府に助言するために使用される競合モデルの文脈内でこれらのアイデアを実証する。
論文 参考訳(メタデータ) (2023-09-11T15:13:36Z) - Perspectives on Large Language Models for Relevance Judgment [56.935731584323996]
大型言語モデル(LLM)は、関連判断を支援することができると主張している。
自動判定が検索システムの評価に確実に利用できるかどうかは不明である。
論文 参考訳(メタデータ) (2023-04-13T13:08:38Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
本稿では、Dunning-Kruger Effect(DKE)がAIシステムへの適切な依存を妨げているかどうかを論じる。
DKEは、能力の低い個人が自身のスキルやパフォーマンスを過大評価しているため、メタ認知バイアスである。
その結果、パフォーマンスを過大評価する参加者は、AIシステムへの信頼度が低い傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-01-25T14:26:10Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
ロボットシステムの鍵となる課題は、他のエージェントの振る舞いを理解することである。
正しい推論の処理は、(衝突)因子が実験的に制御されない場合、特に困難である。
人に関する観察研究を行うために必要なツールをロボットに装備することを提案する。
論文 参考訳(メタデータ) (2022-01-27T22:15:56Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。