論文の概要: Human-in-the-loop Fairness: Integrating Stakeholder Feedback to Incorporate Fairness Perspectives in Responsible AI
- arxiv url: http://arxiv.org/abs/2312.08064v3
- Date: Fri, 04 Oct 2024 11:23:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:07:18.038713
- Title: Human-in-the-loop Fairness: Integrating Stakeholder Feedback to Incorporate Fairness Perspectives in Responsible AI
- Title(参考訳): Human-in-the-loop Fairness: Responsible AIにおけるフェアネスの視点を組み込むためのステークホルダフィードバックの統合
- Authors: Evdoxia Taka, Yuri Nakao, Ryosuke Sonoda, Takuya Yokota, Lin Luo, Simone Stumpf,
- Abstract要約: 公正は人工知能(AI)を用いたリスクの高い意思決定への関心が高まっている
普遍的に受け入れられる公正度尺度はなく、公正性は文脈依存であり、公正と見なされるものに関して矛盾する視点があるかもしれない。
私たちの作業は、ステークホルダーが特定の決定インスタンスとその公正性に関する結果に対してフィードバックをすることができるアプローチに従っています。
- 参考スコア(独自算出の注目度): 4.0247545547103325
- License:
- Abstract: Fairness is a growing concern for high-risk decision-making using Artificial Intelligence (AI) but ensuring it through purely technical means is challenging: there is no universally accepted fairness measure, fairness is context-dependent, and there might be conflicting perspectives on what is considered fair. Thus, involving stakeholders, often without a background in AI or fairness, is a promising avenue. Research to directly involve stakeholders is in its infancy, and many questions remain on how to support stakeholders to feedback on fairness, and how this feedback can be integrated into AI models. Our work follows an approach where stakeholders can give feedback on specific decision instances and their outcomes with respect to their fairness, and then to retrain an AI model. In order to investigate this approach, we conducted two studies of a complex AI model for credit rating used in loan applications. In study 1, we collected feedback from 58 lay users on loan application decisions, and conducted offline experiments to investigate the effects on accuracy and fairness metrics. In study 2, we deepened this investigation by showing 66 participants the results of their feedback with respect to fairness, and then conducted further offline analyses. Our work contributes two datasets and associated code frameworks to bootstrap further research, highlights the opportunities and challenges of employing lay user feedback for improving AI fairness, and discusses practical implications for developing AI applications that more closely reflect stakeholder views about fairness.
- Abstract(参考訳): 公正性は、人工知能(AI)を用いたリスクの高い意思決定に対する関心が高まっていますが、純粋に技術的手段を通じてそれを保証することは難しいのです。
したがって、しばしばAIや公正さの背景を持たない利害関係者の関与は、有望な道である。
利害関係者を直接関与する研究は初期段階にあり、利害関係者に公正性へのフィードバックをどのように支援するか、このフィードバックをAIモデルに組み込むにはどうすればよいのか、多くの疑問が残っている。
私たちの作業は、ステークホルダが自身の公正性に関して、特定の決定インスタンスと結果に対してフィードバックを与え、次にAIモデルを再トレーニングする、というアプローチに従っています。
このアプローチを検討するために、ローンアプリケーションで使用される信用格付けのための複雑なAIモデルについて2つの研究を行った。
調査1では,58名のレイユーザからのローン申請決定に対するフィードバックを収集し,オフライン実験を行い,精度と公正度の測定値に与える影響について検討した。
調査2では,66名の参加者に対して,公正さに対するフィードバックの結果を提示し,さらにオフライン分析を行った。
我々の研究は2つのデータセットと関連するコードフレームワークに貢献し、さらなる研究をブートストラップし、AI公正性を改善するためにユーザフィードバックを日常的に活用する機会と課題を強調し、公正性に関するステークホルダーの見解をより深く反映したAIアプリケーションを開発するための実践的意味について論じています。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - EARN Fairness: Explaining, Asking, Reviewing and Negotiating Artificial Intelligence Fairness Metrics Among Stakeholders [5.216732191267959]
我々は、AIの専門知識を必要とせず、利害関係者間でのメトリクスの集合的決定を促進する新しいフレームワークEARN Fairnessを提案する。
このフレームワークは、適応可能なインタラクティブシステムと、公正度指標を説明するステークホルダ中心のEARNフェアネスプロセス、利害関係者の個人的メトリック選好、総括的メトリクス、メトリクス選択に関するコンセンサスを交渉する。
我々の研究によると、EARN Fairnessフレームワークは、利害関係者が個人の好みを表現し、合意に達することを可能にし、リスクの高い状況下で人間中心のAIフェアネスを実装するための実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T07:20:30Z) - The Impossibility of Fair LLMs [59.424918263776284]
大規模言語モデル(LLM)の時代において、公正なAIの必要性はますます明確になっている。
我々は、機械学習研究者が公正性を評価するために使った技術フレームワークについてレビューする。
我々は、特定のユースケースにおける公平性を達成するためのより現実的な目標のためのガイドラインを策定する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - Multi-stakeholder Perspective on Responsible Artificial Intelligence and
Acceptability in Education [0.0]
この研究は、多職種の視点から、教育における異なるAI応用の受容性について検討した。
データプライバシ、AIエージェンシー、透明性、説明可能性、AIの倫理的展開に関する懸念に対処する。
論文 参考訳(メタデータ) (2024-02-22T23:59:59Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
これは、数学的推論に倫理的考察をもたらす重要な方法であると主張する。
我々は、2021年12月のOmicron型COVID-19の拡散について、英国政府に助言するために使用される競合モデルの文脈内でこれらのアイデアを実証する。
論文 参考訳(メタデータ) (2023-09-11T15:13:36Z) - Why not both? Complementing explanations with uncertainty, and the role
of self-confidence in Human-AI collaboration [12.47276164048813]
本研究では,不確実性評価とモデル説明がモデルに対するユーザの信頼,理解,信頼にどのように影響するかを明らかにするための実証的研究を行う。
また,合意と切り換え率に基づいて,後者が分析結果を歪める可能性についても論じる。
論文 参考訳(メタデータ) (2023-04-27T12:24:33Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Algorithmic Fairness in Business Analytics: Directions for Research and
Practice [24.309795052068388]
本稿では,アルゴリズムフェアネスの先見的,BAに着目したレビューを行う。
まず、バイアスの源泉と測定方法、およびバイアス緩和アルゴリズムに関する最先端の研究について概説する。
次に、ユーティリティ・フェアネスの関係について詳細な議論を行い、これらの2つの構成要素間のトレードオフの頻繁な仮定は、しばしば間違いまたは近視的であることを強調した。
論文 参考訳(メタデータ) (2022-07-22T10:21:38Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。